. 24/7 Space News .
ICE WORLD
Geophysics could slow Antarctic ice retreat
by Staff Writers
Montreal, Canada (SPX) Nov 17, 2015


"The fate of the polar ice sheets in a warming world is a major concern for policy makers - and attention is rightly focused on the importance of restraining CO2 emissions and preparing for rising sea levels," says lead author Natalya Gomez, an assistant professor of Earth and Planetary Sciences at McGill University in Montreal.

The anticipated melting of the massive West Antarctic Ice Sheet could be slowed by two big factors that are largely overlooked in current computer models, according to a new study.

The findings, published online in Nature Communications, suggest that the impact on global sea levels from the retreating ice sheet could be less drastic - or at least more gradual - than recent computer simulations have indicated.

Over the past year, numerous studies have warned that parts of the West Antarctic Ice Sheet are on the verge of a runaway retreat. Just last week a high-profile research paper forecast that this could lead eventually to a rise in global sea levels of as much as three metres.

The authors of the new Nature Communications paper, however, focus on two geophysical elements that they say aren't adequately reflected in computer simulations for this region: the surprisingly powerful gravitational pull of the immense ice sheet on surrounding water, and the unusually fluid nature of the mantle beneath the bedrock that the ice sits on.

"The fate of the polar ice sheets in a warming world is a major concern for policy makers - and attention is rightly focused on the importance of restraining CO2 emissions and preparing for rising sea levels," says lead author Natalya Gomez, an assistant professor of Earth and Planetary Sciences at McGill University in Montreal. "But our study shows that for Antarctica, in particular, computer models also need to take into account how gravitational effects and variations in Earth structure could affect the pace of future ice-sheet loss."

The gravity effect
Most people think of gravity as the force that keeps our feet on the ground. But any large body - such as a massive expanse of ice - exerts a gravitational pull on other bodies, including water.

As the West Antarctic Ice Sheet melts, the researchers project, the reduction in its mass would reduce the gravitational pull to such an extent that it would lower sharply the sea level near the ice. This, in turn, would slow the projected pace of retreat of the ice sheet.

The elasticity effect
Gomez and co-authors David Pollard of Pennsylvania State University and David Holland of New York University also factor another important variable into their simulations. When an ice sheet retreats, the solid Earth beneath it, freed from the load of the ice, rebounds upward. This rebound occurs in two parts: an elastic component that happens right away, and a viscous component that happens over hundreds to thousands of years. (The Earth's interior - or mantle - flows like a fluid but very slowly because it is very viscous).

The West Antarctic sits atop a region where the mantle flows more easily than in other parts of the Earth. So the land there will pop up faster than scientists - and their computer models - would expect based on the average viscosity of the Earth's mantle.

"Our simulations show that when we assume a structure for the Earth's interior that resembles the structure underneath the West Antarctic, the Earth's surface rebounds higher and more quickly near the edge of the retreating ice sheet," says co-author Holland of NYU. "This makes the water along that edge shallower, which slows the retreat of the ice sheet."

CO2 emissions a crucial factor
The researchers' simulations also confirm that the levels of future CO2 emissions will be a crucial factor in the pace of retreat for the region's ice. "The lower the levels of CO2 in the atmosphere, the more the geophysical factors will be able to help stem the ice's retreat," Gomez says. "The greater the emissions, the more the geophysical forces risk being overwhelmed by the strength of warming."

"Sea-level feedback lowers projections of future Antarctic Ice-Sheet mass loss", Natalya Gomez et al, Nature Communications, Nov. 10, 2015. DOI: 10.1038/ncomms9798


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
McGill University
Beyond the Ice Age






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ICE WORLD
Growing Antarctic ice sheet caused ancient Mediterranean to dry up
Dunedin, New Zealand (SPX) Nov 17, 2015
An international research team led by a scientist at New Zealand's University of Otago has resolved the mystery of the processes involved in the Mediterranean Sea drying up around 5.6 million years ago. The event, known as the Messinian Salinity Crisis (MSC), saw the Mediterranean become a 1.5km deep basin for around 270,000 years. It also left a kilometers-deep layer of salt due to seawat ... read more


ICE WORLD
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

ICE WORLD
A witness to a wet early Mars

NASA completes heat shield testing for future Mars exploration vehicles

Curiosity Mars Rover Heads Toward Active Dunes

Upgrade Helps NASA Study Mineral Veins on Mars

ICE WORLD
XCOR develops Lynx Simulator

Orion ingenuity improves manufacturing while reducing mass

Orion's European module ready for testing

General Dynamics demos SGSS Command and Control Infrastructure for NASA

ICE WORLD
China to launch Dark Matter Satellite in mid-December

China to better integrate satellite applications with Internet

China's satellite expo opens

New rocket readies for liftoff in 2016

ICE WORLD
Space-grown flowers will be new year blooms on International Space Station

Cygnus Launch Poised to Bolster Station Science, Supplies

Progress cargo spacecraft to be launched Dec 21

Space station power short circuits, system repairs needed

ICE WORLD
United Launch Alliance exits launch competition, leaving SpaceX

Spaceport America opens up two new campuses

Recycled power plant equipment bolsters ULA in its energy efficiency

Purchase of building at Ellington a key step in Houston Spaceport development plans

ICE WORLD
Rocket Scientists to Launch Planet-Finding Telescope

5400mph winds discovered hurtling around planet outside solar system

New exoplanet in our neighborhood

Asteroid ripped apart to form star's glowing ring system

ICE WORLD
Power up: Cockroaches employ a 'force boost' to chew through tough materials

Queen's University Belfast, Northern Ireland, invents first 'porous liquid'

Hydrogel superglue is 90 percent water

Simple errors limit scientific scrutiny









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.