Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Gamma-ray bursts' highest power side unveiled by Fermi telescope
by Staff Writers
University Park PA (SPX) Feb 22, 2012


Most gamma-ray bursts occur when stars that are more than 25 times larger than our sun come to the end of their lives.

Detectable for only a few seconds but possessing enormous energy, gamma-ray bursts are difficult to capture because their energy does not penetrate the Earth's atmosphere. Now, thanks to an orbiting telescope, astrophysicists are filling in the unknowns surrounding these bursts and uncovering new questions.

The Fermi Gamma-Ray Space Telescope, formerly called the Gamma-Ray Large Area Space Telescope, launched on June 11, 2008. As part of its mission, the telescope records any gamma-ray bursts within its viewing area.

"Fermi is lucky to measure the highest energy portion of the gamma-ray burst emission, which last for hundreds to thousands of seconds - maybe 20 minutes," said Peter Meszaros, Eberly Chair Professor of Astronomy and Astrophysics and Physics, Penn State.

Most gamma-ray bursts occur when stars that are more than 25 times larger than our sun come to the end of their lives. When the internal nuclear reaction in these stars ends, the star collapses in on itself and forms a black hole. The outer envelope of the star is ejected forming a supernova.

"The black hole is rotating rapidly and as it is swallowing the matter from the star, the rotation ejects a jet of material through the supernova envelope," said Meszaros.

This jet causes the gamma-ray burst, which briefly becomes the brightest thing in the sky. However, unlike supernovas that radiate in all directions, gamma-ray bursts radiate in a very narrow area, and Fermi sees only jets ejecting in its direction.

This, however, is the direction in which they send their highest energy photons. Any gamma-ray bursts on the other side of the black hole or even off at an angle are invisible to the telescope.

"We actually miss about 500 gamma-ray bursts for every one we detect," Meszaros told attendees today (Feb. 18) at the annual meeting of the American Association for the Advancement of Science in Vancouver, British Columbia.

The gamma-ray bursts that Fermi has seen have allowed astrophysicists to clarify previous theories about gamma-ray bursts.

"We have been able to rule out the simplest version of theories which combine quantum mechanics with gravity, although others remain to be tested," said Meszaros.

Meszaros notes that Fermi and other programs like the SWIFT telescope have shown that gamma-ray bursts last longer than we thought they did and that there are long and short gamma-ray bursts.

Fermi, a more specialized telescope than the SWIFT telescope which also detects gamma-ray bursts, enabled scientists to look at the very fast - near the speed of light - jets producing the gamma-ray emissions. While researchers are still modifying scientific theories on the nature of these bursts, thanks to Fermi, they now have actual measurements to add to the theoretical debate.

"Fermi has done much better in measuring how close to the speed of light the jet gets," said Meszaros. "But we still don't know if it is 99.9995 percent the speed of light or 99.99995 percent the speed of light."

Gamma-ray bursts occur in many places in the universe, but because they are a product of aging stars they may be able to shed some light on the beginnings of the universe. The bursts are visible at the longest distance from earth and therefore at the earliest time in the universe.

"We think we can detect them at the infancy of the universe," said Meszaros.

Wherever a gamma-ray burst exists, any planets in the vicinity suffer. Further away, the radiation from a gamma-ray burst would destroy the protective ozone in the upper atmosphere, allowing ultraviolet radiation to kill terrestrial plant life and animals would starve. Only sea life would remain unharmed. However, it is estimated that such nearby bursts can be expected only every 300 million years.

Because scientists believe that gamma-ray bursts also emit cosmic rays and neutrinos, other observatories are also observing these phenomena. Ice Cube Neutrino Observatory at the South Pole is trying to capture neutrinos, while the Pierre Auger Cosmic Ray Observatory in Argentina captures cosmic rays from these objects.

.


Related Links
Penn State
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Fermi Space Telescope Explores New Energy Extremes
Washington DC (SPX) Jan 11, 2012
After more than three years in space, NASA's Fermi Gamma-ray Space Telescope is extending its view of the high-energy sky into a largely unexplored electromagnetic range. Today, the Fermi team announced its first census of energy sources in this new realm. Fermi's Large Area Telescope (LAT) scans the entire sky every three hours, continually deepening its portrait of the sky in gamma rays, ... read more


STELLAR CHEMISTRY
Back to the Moon A Modern Redux

X-rays illuminate the interior of the Moon

NASA Spacecraft Reveals Recent Geological Activity on the Moon

China publishes high-resolution full moon map

STELLAR CHEMISTRY
Rock Studies Continue for Opportunity

ISS may become Martian flight simulator

Honeycombs and Hexacopters Help Tell Story of Mars

Martian Carbon Dioxide Clouds Tied To Atmospheric Gravity Waves

STELLAR CHEMISTRY
Stark warning emerges from science summit

Glenn: I don't think of myself as a hero

ASU professor uses Star Trek themes to communicate science

50th anniversary of first US space flight is bittersweet

STELLAR CHEMISTRY
Launch of China's manned spacecraft Shenzhou-9 scheduled

Shenzhou 9 To Carry 3 Astronauts To Tiangong-1 Space Station

China to launch spacecraft in June: report

Is Shenzhou Unsafe?

STELLAR CHEMISTRY
Fifth ATV named after Georges Lemaitre

Space station panel installation delayed

Russian cosmonauts begin ISS spacewalk

Advanced Communications Testbed for Space Station

STELLAR CHEMISTRY
NuSTAR Mated to its Rocket

Rocket to be launched from Poker Flat Research Range

UA Huntsville scientific team helping Japanese space program launch safely

Iran mulls base to launch bigger satellites

STELLAR CHEMISTRY
Hubble Reveals a New Class of Extrasolar Planet

US scientists discover new 'waterworld' planet

Scattered Light Could Reveal Alien Atmospheres

Searching for Planets in Clouds of Dust

STELLAR CHEMISTRY
Baylor research on carbon fibers could help NASA

Drexel Engineers Develop Cement With 97 Percent Smaller CO2 and Energy Footprint

UK takes the lead in redefining the kilogram

China computer maker seeks Shanghai iPad sale ban




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement