Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



STELLAR CHEMISTRY
Gamma-ray Telescopes Reveal a High-energy Trap in Our Galaxy's Center
by Francis Reddy for GSFC News
Greenbelt MD (SPX) Jul 20, 2017


The five telescopes of the High Energy Stereoscopic System (H.E.S.S.), located in Namibia, capture faint flashes that occur when ultrahigh-energy gamma rays are absorbed in the upper atmosphere. A new study of the galactic center combines high-energy observations from H.E.S.S. with lower-energy data from NASA's Fermi Gamma-ray Space Telescope to show that some of the speediest particles become trapped there. Credits: H.E.S.S., MPIK/Christian Foehr

A combined analysis of data from NASA's Fermi Gamma-ray Space Telescope and the High Energy Stereoscopic System (H.E.S.S.), a ground-based observatory in Namibia, suggests the center of our Milky Way contains a "trap" that concentrates some of the highest-energy cosmic rays, among the fastest particles in the galaxy.

"Our results suggest that most of the cosmic rays populating the innermost region of our galaxy, and especially the most energetic ones, are produced in active regions beyond the galactic center and later slowed there through interactions with gas clouds," said lead author Daniele Gaggero at the University of Amsterdam. "Those interactions produce much of the gamma-ray emission observed by Fermi and H.E.S.S."

Cosmic rays are high-energy particles moving through space at almost the speed of light. About 90 percent are protons, with electrons and the nuclei of various atoms making up the rest. In their journey across the galaxy, these electrically charged particles are affected by magnetic fields, which alter their paths and make it impossible to know where they originated.

But astronomers can learn about these cosmic rays when they interact with matter and emit gamma rays, the highest-energy form of light. In March 2016, scientists with the H.E.S.S. Collaboration reported gamma-ray evidence of the extreme activity in the galactic center. The team found a diffuse glow of gamma rays reaching nearly 50 trillion electron volts (TeV). That's some 50 times greater than the gamma-ray energies observed by Fermi's Large Area Telescope (LAT). To put these numbers in perspective, the energy of visible light ranges from about 2 to 3 electron volts.

The Fermi spacecraft detects gamma rays when they enter the LAT. On the ground, H.E.S.S. detects the emission when the atmosphere absorbs gamma rays, which triggers a cascade of particles resulting in a flash of blue light.

In a new analysis, published July 17 in the journal Physical Review Letters, an international team of scientists combined low-energy LAT data with high-energy H.E.S.S. observations. The result was a continuous gamma-ray spectrum describing the galactic center emission across a thousandfold span of energy.

"Once we subtracted bright point sources, we found good agreement between the LAT and H.E.S.S. data, which was somewhat surprising due to the different energy windows and observing techniques used," said co-author Marco Taoso at the Institute of Theoretical Physics in Madrid and Italy's National Institute of Nuclear Physics (INFN) in Turin.

This agreement indicates that the same population of cosmic rays - mostly protons - found throughout the rest of the galaxy is responsible for gamma rays observed from the galactic center. But the highest-energy share of these particles, those reaching 1,000 TeV, move through the region less efficiently than they do everywhere else in the galaxy. This results in a gamma-ray glow extending to the highest energies H.E.S.S. observed.

"The most energetic cosmic rays spend more time in the central part of the galaxy than previously thought, so they make a stronger impression in gamma rays," said co-author Alfredo Urbano at the European Organization for Nuclear Research (CERN) in Geneva and INFN Trieste.

This effect is not included in conventional models of how cosmic rays move through the galaxy. But the researchers show that simulations incorporating this change display even better agreement with Fermi data.

"The same breakneck particle collisions responsible for producing these gamma rays should also produce neutrinos, the fastest, lightest and least understood fundamental particles," said co-author Antonio Marinelli of INFN Pisa. Neutrinos travel straight to us from their sources because they barely interact with other matter and because they carry no electrical charge, so magnetic fields don't sway them.

"Experiments like IceCube in Antarctica are detecting high-energy neutrinos from beyond our solar system, but pinpointing their sources is much more difficult," said Regina Caputo, a Fermi team member at NASA's Goddard Space Flight Center in Greenbelt, Maryland, who was not involved in the study. "The findings from Fermi and H.E.S.S. suggest the galactic center could be detected as a strong neutrino source in the near future, and that's very exciting."

The Fermi mission is an astrophysics and particle physics partnership, developed by NASA in collaboration with the U.S. Department of Energy, along with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States. The H.E.S.S. Collaboration includes scientists from Germany, France, the United Kingdom, Poland, the Czech Republic, Ireland, Armenia, South Africa and Namibia.

STELLAR CHEMISTRY
Fermi Satellite Observes Billionth Gamma Ray with LAT Instrument
Menlo Park, CA (SPX) May 15, 2017
Imagine you had superhero vision and could see a whole new world of fascinating phenomena invisible to the human eye. NASA's Fermi Gamma-ray Space Telescope gives astrophysicists analogous powers. It captures images of the universe in gamma rays, the most energetic form of light. On April 12, one of the spacecraft's instruments - the Large Area Telescope (LAT), which was conceived of and a ... read more

Related Links
Fermi Gamma-ray Space Telescope
Stellar Chemistry, The Universe And All Within It

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
In Gulf of Mexico, NASA Evaluates How Crew Will Exit Orion

Space Tourist From Asian Country to Travel to ISS in 2019

NASA Awards Mission Systems Operations Contract

ULA to launch Dream Chaser for cargo runs to ISS for Sierra Nevada

STELLAR CHEMISTRY
Elon Musk says successful maiden flight for Falcon Heavy unlikely

Russia to Supply Largest Ever Number of Space Rocket Engines to US This Year

ISRO Develops Ship-Based Antenna System to Track Satellite Launches

Aerojet Rocketdyne tests Advanced Electric Propulsion System

STELLAR CHEMISTRY
Panorama Above 'Perseverance Valley'

Sol 1756: Closing time

Hubble sees Martian moon orbiting the Red Planet

Curiosity Mars Rover Begins Study of Ridge Destination

STELLAR CHEMISTRY
China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

STELLAR CHEMISTRY
LISA Pathfinder: bake, rattle and roll

ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

Korean Aerospace offices raided in anti-corruption probe

Iridium Poised to Make Global Maritime Distress and Safety System History

STELLAR CHEMISTRY
Cleanup Time: Russia Launches Satellite to Remove Space Junk from Orbit

Spacepath Communications Announces Innovative Frequency Converter Systems

Sorting complicated knots

Nature-inspired material uses liquid reinforcement

STELLAR CHEMISTRY
Eyes Wide Open for MASCARA Exoplanet Hunter

Ancient worm burrows offer insights into early 'ecosystem engineers'

Molecular Outflow Launched Beyond Disk Around Young Star

A New Search for Extrasolar Planets from the Arecibo Observatory

STELLAR CHEMISTRY
NASA's New Horizons Team Strikes Gold in Argentina

Juno spots Jupiter's Great Red Spot

New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

New evidence in support of the Planet Nine hypothesis




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement