Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















STELLAR CHEMISTRY
Galaxy Quakes Could Improve Hunt for Dark Matter
by Staff Writers
Rochester NY (SPX) Jan 08, 2016


These images of the Milky Way show the distribution of gas, at left, compared to the distribution of stars, at right, after the dwarf satellite disrupts the galaxy. Image courtesy Sukanya Chakrabarti, Rochester Institute of Technology. For a larger version of this image please go here.

A trio of brightly pulsating stars at the outskirts of the Milky Way is racing away from the galaxy and may confirm a method for detecting dwarf galaxies dominated by dark matter and explain ripples in the outer disk of the galaxy.

This new method to characterize dark matter marks the first real application of the field of galactoseismology. Just as seismologists analyze waves to infer properties about the Earth's interior, Sukanya Chakrabarti, assistant professor at Rochester Institute of Technology, uses waves in the galactic disk to map the interior structure and mass of galaxies.

Chakrabarti and her team used spectroscopic observations to calculate the speed of the three Cepheid variables - stars used as yardsticks to measure distance in galaxies - in the Norma constellation. Chakrabarti's 2015 study used Cepheid variables to mark the location of a dark-matter dominated dwarf galaxy approximately 300,000 light-years away. In contrast, the disk of the Milky Way terminates at 48,000 light-years.

The current study tracks a cluster of Cepheids that are racing away at an average speed of 450,000 miles per hour; while the radial velocity of stars in the stellar disk of the Milky Way is about 13,000 miles per hour, Chakrabarti said. The method confirms her 2009 prediction.

"The radial velocity of the Cepheid variables is the last piece of evidence that we've been looking for," Chakrabarti said. "You can immediately conclude that they are not part of our galaxy."

Invisible particles known as dark matter make up 85 percent of the mass of the universe. The mysterious matter represents a fundamental problem in astronomy because it is not understood, Chakrabarti said.

Her method for locating satellite galaxies dominated by dark-matter taps principles used in seismology to explore the interior of the galaxy.

"We have made significant progress into this new field of galactoseismology whereby you can infer the dark matter content of dwarf galaxies, where they are, as well as properties of the interior of galaxies by looking at observable disturbances in the gas disk," Chakrabarti said.

She added: "The original prediction was based on observed waves in the outer gas disk of our galaxy which led to a specific prediction for how massive this dark matter dominated dwarf galaxy would have to be to produce these waves. It's very similar to seismology in a sense because we're trying to infer things about the interior of galaxies and how much dark matter there is and how much there has to be to produce these disturbances."

The study further questions the standard paradigm that old stars populate the dark matter halo and young stars form in the gas-rich stellar disks.

"Given the evidence, these are very likely young Cepheid variables," Chakrabarti said. "It raises the question, shouldn't we also be exploring and looking for young Cepheid variables in the halo?"

There could be a population of yet undiscovered Cepheid variables that formed from a gas-rich dwarf galaxy falling into the halo, she said.

"We used to have a static picture of galaxy evolution but now we know that galaxies are constantly merging with other smaller galaxies and so within this more dynamical scenario, it's important to ask why wouldn't there be young Cepheid variables that are made in the halo due to fresh gas flowing in, or due to gas-rich dwarf galaxies merging with our own," Chakrabarti said.

Spectroscopic observations used in the study were made at the Gemini Observatory and on the Magellan telescopes, as well as on the WiFeS spectrograph. The international team includes Rodolfo Angeloni, Ken Freeman, Leo Blitz, among others, and RIT research scientist Benjamin Sargent and Andrew Lipnicky, a graduate student in the astrophysical sciences and technology program.

Chakrabarti presented her findings at a press conference hosted by the American Astronomical Society meeting in Kissimmee, Fla., on Jan. 7. Chakrabarti's findings have been submitted to Astrophysical Journal Letters.

.


Related Links
Rochester Institute of Technology
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Russian scientists to develop dark matter detection model
Novosibirsk (Sputnik) Jan 04, 2016
Russian scientists plan to develop a dark matter detection prototype within one to two years, the Siberian Branch of Russian Academy of Science's senior nuclear physics research official said Sunday. "We know that [dark matter] leaves almost no traces and our main task is to dramatically lower the detection threshold to a minimum, which is physically possible in principle. There is quite s ... read more


STELLAR CHEMISTRY
Chang'e-3 landing site named "Guang Han Gong"

South Korea to launch lunar exploration in 2016, land by 2020

Death rumors of Russian lunar program 'greatly exaggerated' - Deputy PM

Russia Postpones Plans on Extensive Moon Exploration Until 2025

STELLAR CHEMISTRY
Rover Rounds Martian Dune to Get to the Other Side

Boulders on a Martian Landslide

NASA suspends March launch of InSight mission to Mars

University researchers test prototype spacesuits at Kennedy

STELLAR CHEMISTRY
Gadgets get smarter, friendlier at CES show

Congress to NASA: Hurry up on that 'habitation augmentation module'

NASA Reaches New Heights

Astronauts Tour Future White Room, Crew Access Tower

STELLAR CHEMISTRY
Robotic telescope built by China and Thailand put into operation

China's Belt and Road Initiative catches world's imagination: Inmarsat CEO

China launches HD earth observation satellite

Chinese rover analyzes moon rocks: First new 'ground truth' in 40 years

STELLAR CHEMISTRY
British astronaut's first spacewalk set for Jan 15

NASA Delivers New Video Experience On ISS

British astronaut dials wrong number on Xmas call from space

Space Station Receives New Space Tool to Help Locate Ammonia Leaks

STELLAR CHEMISTRY
Arianespace starts year with record order backlog

Maintaining Arianespace's launch services leadership in 2016

Russian Space Forces launched 21 spacecraft in 2015

Russian Proton-M Carrier Rocket With Express-AMU1 Satellite Launched

STELLAR CHEMISTRY
Lab discovery gives glimpse of conditions found on other planets

Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

Monster planet is 'dancing with the stars'

STELLAR CHEMISTRY
Setting the Standard for 3-D Printed Rocket Engines

3D-Printed Ceramics Could be Used in Future Space Flights

Preparing for the Unexpected in Space

MBRSC complete final design of KhalifaSat engineering model




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.