Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Gaia's first year of scientific observations
by Staff Writers
Paris (ESA) Aug 26, 2015


The planetary nebula known as Cat's Eye Nebula or NGC 6543, as observed with the Hubble Space Telescope (background image) and with ESA's Gaia satellite (blue points). It is located some 3000 light-years from us. Planetary nebulae are formed when the outer layers of an aging low-mass star are ejected and interact with the surrounding interstellar medium, leaving behind a compact white dwarf. Between July and August 2014, as Gaia performed many subsequent observations of a few patches of the sky close to the ecliptic poles, the satellite made over 200 observations of the Cat's Eye Nebula, located close to the north ecliptic pole. While doing so, Gaia registered over 84 000 detections that accurately trace out the intricate gaseous filaments that such objects are famous for. Image courtesy NASA/ESA/HEIC/The Hubble Heritage Team/STScI/AURA (background image); ESA/Gaia/DPAC/UB/IEEC (blue points). For a larger version of this image please go here.

Last Friday, 21 August, ESA's billion-star surveyor, Gaia, completed its first year of science observations in its main survey mode.

After launch on 19 December 2013 and a six-month long in-orbit commissioning period, the satellite started routine scientific operations on 25 July 2014. Located at the Lagrange point L2, 1.5 million km from Earth, Gaia surveys stars and many other astronomical objects as it spins, observing circular swathes of the sky. By repeatedly measuring the positions of the stars with extraordinary accuracy, Gaia can tease out their distances and motions through the Milky Way galaxy.

For the first 28 days, Gaia operated in a special scanning mode that sampled great circles on the sky, but always including the ecliptic poles. This meant that the satellite observed the stars in those regions many times, providing an invaluable database for Gaia's initial calibration.

At the end of that phase, on 21 August 2014, Gaia commenced its main survey operation, employing a scanning law designed to achieve the best possible coverage of the whole sky.

Since the start of its routine phase, the satellite recorded 272 billion positional or astrometric measurements 54.4 billion brightness or photometric data points, and 5.4 billion spectra.

The Gaia team have spent a busy year processing and analysing these data, en route towards the development of Gaia's main scientific products, consisting of enormous public catalogues of the positions, distances, motions and other properties of more than a billion stars. Because of the immense volumes of data and their complex nature, this requires a huge effort from expert scientists and software developers distributed across Europe, combined in Gaia's Data Processing and Analysis Consortium (DPAC).

"The past twelve months have been very intense, but we are getting to grips with the data, and are looking forward to the next four years of nominal operations," says Timo Prusti, Gaia project scientist at ESA.

"We are just a year away from Gaia's first scheduled data release, an intermediate catalogue planned for the summer of 2016. With the first year of data in our hands, we are now halfway to this milestone, and we're able to present a few preliminary snapshots to show that the spacecraft is working well and that the data processing is on the right track."

As one example of the ongoing validation, the Gaia team has been able to measure the parallax for an initial sample of two million stars.

Parallax is the apparent motion of a star against a distant background observed over the period of a year and resulting from the Earth's real motion around the Sun; this is also observed by Gaia as it orbits the Sun alongside Earth. But parallax is not the only movement seen by Gaia: the stars are also really moving through space, which is called proper motion.

Gaia has made an average of roughly 14 measurements of each star on the sky thus far, but this is generally not enough to disentangle the parallax and proper motions.

To overcome this, the scientists have combined Gaia data with positions extracted from the Tycho-2 catalogue, based on data taken between 1989 and 1993 by Gaia's predecessor, the Hipparcos satellite.

This restricts the sample to just two million out of the more than one billion that Gaia has observed so far, but yields some useful early insights into the quality of its data.

The nearer a star is to the Sun, the larger its parallax, and thus the parallax measured for a star can be used to determine its distance. In turn, the distance can be used to convert the apparent brightness of the star into its true brightness or 'absolute luminosity'.

Astronomers plot the absolute luminosities of stars against their temperatures - which are estimated from the stars' colours - to generate a 'Hertzsprung-Russell diagram', named for the two early 20th century scientists who recognised that such a diagram could be used as a tool to understand stellar evolution.

"Our first Hertzsprung-Russell diagram, with absolute luminosities based on Gaia's first year and the Tycho-2 catalogue, and colour information from ground-based observations, gives us a taste of what the mission will deliver in the coming years," says Lennart Lindegren, professor at the University of Lund and one of the original proposers of the Gaia mission.

As Gaia has been conducting its repeated scans of the sky to measure the motions of stars, it has also been able to detect whether any of them have changed their brightness, and in doing so, has started to discover some very interesting astronomical objects.

Gaia has detected hundreds of transient sources so far, with a supernova being the very first on 30 August 2014. These detections are routinely shared with the community at large as soon as they are spotted in the form of 'Science Alerts', enabling rapid follow-up observations to be made using ground-based telescopes in order to determine their nature.

One transient source was seen undergoing a sudden and dramatic outburst that increased its brightness by a factor of five. It turned out that Gaia had discovered a so-called 'cataclysmic variable', a system of two stars in which one, a hot white dwarf, is devouring mass from a normal stellar companion, leading to outbursts of light as the material is swallowed. The system also turned out to be an eclipsing binary, in which the relatively larger normal star passes directly in front of the smaller, but brighter white dwarf, periodically obscuring the latter from view as seen from Earth.

Unusually, both stars in this system seem to have plenty of helium and little hydrogen. Gaia's discovery data and follow-up observations may help astronomers to understand how the two stars lost their hydrogen.

Gaia has also discovered a multitude of stars whose brightness undergoes more regular changes over time. Many of these discoveries were made between July and August 2014, as Gaia performed many subsequent observations of a few patches of the sky close to the ecliptic poles. This closely sampled sequence of observations made it possible to find and study variable stars located in these regions.

Located close to the south ecliptic pole is the famous Large Magellanic Cloud (LMC), a dwarf galaxy and close companion of our own galaxy, the Milky Way. Gaia has delivered detailed light curves for dozens of RR Lyrae type variable stars in the LMC, and the fine details revealed in them testify to the very high quality of the data.

Another curious object covered during the same mission phase is the Cat's Eye Nebula, a planetary nebula also known as NGC 6543, which lies close to the north ecliptic pole.

Planetary nebulae are formed when the outer layers of an aging low-mass star are ejected and interact with the surrounding interstellar medium, leaving behind a compact white dwarf. Gaia made over 200 observations of the Cat's Eye Nebula, and registered over 84 000 detections that accurately trace out the intricate gaseous filaments that such objects are famous for. As its observations continue, Gaia will be able to see the expansion of the nebular knots in this and other planetary nebulae.

Closer to home, Gaia has detected a wealth of asteroids, the small rocky bodies that populate our solar system, mainly between the orbits of Mars and Jupiter. Because they are relatively nearby and orbiting the Sun, asteroids appear to move against the stars in astronomical images, appearing in one snapshot of a given field, but not in images of the same field taken at later times.

Gaia scientists have developed special software to look for these 'outliers', matching them with the orbits of known asteroids in order to remove them from the data being used to study stars. But in turn, this information will be used to characterise known asteroids and to discover thousands of new ones.

Finally, in addition to the astrometric and photometric measurements being made by Gaia, it has been collecting spectra for many stars. The basic use of these data is to determine the motions of the stars along the line-of-sight by measuring slight shifts in the positions of absorption lines in their spectra due to the Doppler shift. But in the spectra of some hot stars, Gaia has also seen absorption lines from gas in foreground interstellar material, which will allow the scientists to measure its distribution.

"These early proof-of-concept studies demonstrate the quality of the data collected with Gaia so far and the capabilities of the processing pipeline. The final data products are not quite ready yet, but we are working hard to provide the first of them to the community next year. Watch this space," concludes Timo.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Gaia at ESA
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





STELLAR CHEMISTRY
The tumultuous heart of our Galaxy
Paris (ESA) Aug 21, 2015
This new image of powerful remnants of dead stars and their mighty action on the surrounding gas from ESA's XMM-Newton X-ray observatory reveals some of the most intense processes taking place at the centre of our galaxy, the Milky Way. The bright, point-like sources that stand out across the image trace binary stellar systems in which one of the stars has reached the end of its life, evol ... read more


STELLAR CHEMISTRY
Russia's moon landing plan hindered by financial distress

Research May Solve Lunar Fire Fountain Mystery

LADEE spacecraft finds neon in lunar atmosphere

Crowdfunding raises $720,000 to restore Neil Armstrong spacesuit

STELLAR CHEMISTRY
Opportunity gives clay-mineral rocks get closer inspection

Mars Rover Moves Onward After 'Marias Pass' Studies

NASA can send your name to Mars

How Much Contamination is Okay on Mars 2020 Rover?

STELLAR CHEMISTRY
What's for Dinner? BioFood!

Springer retracts 64 scientific papers with fake peer reviews

Going Up! Elevator to Space Just Became Real

Orion Begins Critical Design Review Milestone

STELLAR CHEMISTRY
China's "sky eyes" help protect world heritage Angkor Wat

China's space exploration potential has US chasing its own tail

China to deploy space-air-ground sensors for environment protection

Chinese earth station is for exclusively scientific and civilian purposes

STELLAR CHEMISTRY
Japan's cargo craft delivers supplies, whiskey to space station

NASA extends Raytheon contract for facilities that support human spaceflight

Whiskey Delivered to Space Station - For Science Only

NanoRacks External Platform, CubeSats, Launched to ISS on Japanese HTV-5

STELLAR CHEMISTRY
ARSAT-2 arrives in French Guiana

Success for 2 long-time Arianespace customers: Eutelsat and Intelsat

AAC and Garvey Spacecraft Deliver First Rocket Motor to Kodiak

Arianespace integrates EUTELSAT 8 West B and Intelsat 34 for Ariane 5 launch

STELLAR CHEMISTRY
A new model of gas giant planet formation

Planetary pebbles were building blocks for the largest planets

Solar System formation don't mean a thing without that spin

Gemini-discovered world is most like Jupiter

STELLAR CHEMISTRY
India to Set Up Space Research and Satellite Monitoring Station in Fiji

Laser-burned graphene gains metallic powers

Hydrogen sulfide loses its electrical resistance under high pressure at -70C

Engineers identify how to keep surfaces dry underwater




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.