Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Future computers that are 'normally off'
by Staff Writers
Washington DC (SPX) Apr 09, 2014


This image shows computer architecture of the future, based on spintronics and nonvolatile STT-MRAM devices. Image courtesy Koji Ando/AIST.

If a research team in Japan gets its wish, "normally off" computers may one day soon be replacing present computers in a move that would both eliminate volatile memory, which requires power to maintain stored data, and reduce the gigantic energy losses associated with it.

Most parts of present computers are made with volatile devices such as transistors and dynamic random access memory (DRAM), which loses information when powered off. So computers are designed on the premise that power is "normally on."

Back in 2000, the concept of "instant on" computers based on magnetoresistive random access memory (MRAM) emerged as a way to reduce that irritatingly long hang time associated with powering up - but it comes with a big tradeoff because it requires using volatile devices that continue to devour energy after the initial power up.

By 2001, researchers in Japan figured out a way to eliminate this pointless energy loss by using a nonvolatile function of advanced spin-transfer torque magnetoresistive random access memory (STT-MRAM) technology to create a new type of computer: a "normally off" one.

Now, Koji Ando and his colleagues at the Japanese National Projects have broadly envisioned the future of STT-MRAM, and in the Journal of Applied Physics, which is produced by AIP Publishing, they describe how it will radically alter computer architectures and consumer electronics.

"Spintronics couples magnetism with electronics at the quantum mechanical level," explained Ando. "Indeed, STT-MRAM no longer requires an electromagnetic coil for both writing and reading information. We're excited by this paradigm shift and are working on developing a variety of technologies for next-generation electronics devices."

The potential for redesigning present-day technologies so that computer power consumption is zero during any short intervals when users are absent is that may lead to extremely energy-efficient personal devices powered by a hand-crank or embedded solar panel. Such devices would find use in a wide swath of applications ranging from mobile computing to wearable or embedded electronics, and they would be of particular interest to the healthcare, safety and educational industries.

Some hurdles remain, Ando said. "We need high-performance nonvolatile devices that don't require a power supply to retain information to create 'normally off' computers while simultaneously guaranteeing sufficiently high-speed operation to manipulate information," Ando said. "The main memory, for example, requires performance as fast as 10 to 30 nanoseconds, and a density as high as 1 Gigabit per chip."

If STT-MRAM is to play a key role for "normally off" computers, it will first require the integration of a variety of technologies, he added. "We're currently collaborating with researchers in several fields - from materials science, device technology, circuit technology, memory and computer architectures, operating systems," Ando said.

The article, "Spin-transfer torque magnetoresistive random-access memory technologies for normally off computing" by K. Ando, S. Fujita, J. Ito, S. Yuasa, Y. Suzuki, Y. Nakatani, T. Miyazaki, and H. Yoda is published in the Journal of Applied Physics on April 8, 2014 (DOI: 10.1063/1.4869828). After that date, it can be accessed at: http://tinyurl.com/pjxvdu6

Authors on this study are affiliated with Japan's National Institute of Advanced Industrial Science and Technology, Toshiba Corp., Osaka University, University of Electro-Communication, and Tohoku University.

.


Related Links
American Institute of Physics
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
To bridge LEDs' green gap, scientists think really small
Berkeley CA (SPX) Apr 07, 2014
Nanostructures half the breadth of a DNA strand could improve the efficiency of light emitting diodes (LEDs), especially in the "green gap," a portion of the spectrum where LED efficiency plunges, simulations at the U.S. Department of Energy's National Energy Research Scientific Computing Center (NERSC) have shown. Using NERSC's Cray XC30 supercomputer "Edison," University of Michigan rese ... read more


CHIP TECH
Russian Federal Space Agency is elaborating Moon exploration program

Science, Discovery Channels to broadcast private race to the moon

Take the Plunge: LADEE Impact Challenge

Land a Lunar Laser Reflector Now!

CHIP TECH
Mars Exploration in a Deep Mine

Opportunity Moves Further Southwest On Murray Ridge

Gusev Crater once held a lake after all

Images From NASA Mars Rover Include Bright Spots

CHIP TECH
Veggie Will Expand Fresh Food Production on ISS

Orion Avionics System Ready for First Test Flight

Reporters See NASA's Latest High Tech Exploration Tool Before Testing

Recycling astronaut urine for energy and drinking water

CHIP TECH
China launches experimental satellite

Tiangong's New Mission

"Space Odyssey": China's aspiration in future space exploration

China to launch first "space shuttle bus" this year

CHIP TECH
Progress Departs, New Cargo Ships Awaiting Launch

Progress M-22M to be undocked from ISS and sent on science mission

Russian cargo ship docks to space station

Is "divorce" between Russian and US space agencies possible?

CHIP TECH
On-board camera provides a unique perspective on Arianespace Flight VS07

NASA Ames Launches Nanosatellites, Science Experiments on SpaceX Rocket

The DZZ-HR satellite is fueled for Arianespace's upcoming Vega launch

EUTELSAT 3B Mission Status Update

CHIP TECH
The Importance of Planetary Plumes

Orbital physics is child's play with 'Super Planet Crash'

Faraway Moon or Faint Star? Possible Exomoon Found

Lick's Automated Planet Finder: First robotic telescope for planet hunters

CHIP TECH
Headwall Extends Global Reach in Asia/Pac and Israel

Hyperspectral Software Announced for Airborne Applications

Vanguard Space Technologies Antenna Reflectors on Amazonas Satellite Launch

Materials and electronics that dissolve when triggered




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.