. 24/7 Space News .
WATER WORLD
Frequency not severity has greater impact of giant kelp forests
by Staff Writers
Santa Barbara CA (SPX) Oct 31, 2018

Kelp forests along the California coast are already undergoing an attack brought on by factors including El Nino weather patterns, which bring destructive storms, nutrient-poor warm waters and aggressive, seaweed-eating purple urchins into the forests. The loss of underwater foliage has driven out the purple urchins' main kelp-dwelling natural predators and the urchins themselves prevent the regrowth of the kelp, leaving it up to people to try to save the habitat - and by extension their own food sources and livelihoods.

Giant kelp forests - those ethereal, swaying columns of seaweed found in the intermediate to deep water zones of cooler coasts along the Pacific Ocean and Southern Hemisphere - provide habitat for a variety of species that spend their lives in kelp's canopies or at the rocky bottoms.

"Giant kelp's complex physical structure that extends throughout the water column and its very high productivity are unique," said Bob Miller, a research biologist at UC Santa Barbara's Marine Science Institute (MSI). "No other species in the kelp forest can replace giant kelp's high capacity to physically modify the environment and produce habitat and food for a myriad of other species." Thus, he said, giant kelp are known as a "foundation species" - an organism that plays a strong role in structuring a community.

While giant kelp are generally able to withstand strong currents, recover after powerful storms and replenish themselves at a rapid rate (about 3 percent of their weight per day), the onslaught of disturbances anticipated as a result of climate change may be more than the species can bear, according to Dan Reed, also a research biologist at MSI. The result could be an upheaval of the ecology of the entire kelp forest.

"One of the expectations of climate change is that many types of disturbances - for example fire, hurricanes and floods - will occur more often or become more severe in their intensity," Reed said. "Ecologists have long recognized the important role of disturbance in structuring natural communities, however, they have yet to resolve how natural communities respond to increases in the frequency of disturbance versus increases in the severity of disturbance."

The researchers' findings, in a paper titled "Loss of foundation species: disturbance frequency outweighs severity in structuring kelp forest communities," are published in the journal Ecology.

"We found that the frequency of disturbance was the most important factor influencing kelp forest biodiversity, whereas the severity of disturbance in a given year played a minor role," said lead researcher Max Castorani, a professor of environmental sciences at the University of Virginia.

In this rare long-term study, the researchers counted and measured more than 200 species of plants, invertebrates and fishes in large experimental and control kelp forests off the Santa Barbara coast every three months over a nine-year period.

They found that annual disturbances where kelp forests were experimentally cut back and reduced year-after-year, as happens during severe winter storms involving large waves, resulted in a doubling of smaller plants and invertebrates attached to the seafloor (algae, corals, anemones, sponges), but also resulted in 30 to 61 percent fewer fish and shellfish, such as clams, sea urchins, starfish, lobsters and crabs.

"Our findings surprised us because we expected that a single severe winter storm would result in big changes to kelp forest biodiversity," Castorani said. "Instead, the number of disturbances over time had the greatest impact because frequent disturbances suppress the recovery of giant kelp, with large consequences for the surrounding sea life." An unhealthy kelp forest offers less shade and shelter for certain organisms, and the resulting ecosystem would be less complex and productive overall.

Kelp forests along the California coast are already undergoing an attack brought on by factors including El Nino weather patterns, which bring destructive storms, nutrient-poor warm waters and aggressive, seaweed-eating purple urchins into the forests. The loss of underwater foliage has driven out the purple urchins' main kelp-dwelling natural predators and the urchins themselves prevent the regrowth of the kelp, leaving it up to people to try to save the habitat - and by extension their own food sources and livelihoods.

The scientists are continuing to monitor their study plots to determine the trajectory and rate of recovery of the kelp forest community under a natural disturbance regime. "We are also analyzing the results from our experiment to evaluate how the frequency and severity of disturbance alter the overall primary productivity of the kelp forest," Miller said.

The experiment was conducted at the National Science Foundation's Santa Barbara Coastal Long-Term Ecological Research (LTER) site. The NSF funds numerous long-term research projects around the world designed to gain a big-picture view of changes to ecosystems over decades and beyond.

"It's a significant finding that the severity and frequency of disturbances influence kelp bed communities in different ways," said David Garrison, a director of the NSF's LTER program, which funded the study. "We need this kind of research to predict what future kelp bed communities will look like, and what ecosystem services they will provide."


Related Links
University of California - Santa Barbara
Water News - Science, Technology and Politics


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


WATER WORLD
Alterations to seabed raise fears for future
Montreal, Canada (SPX) Oct 30, 2018
The ocean floor as we know it is dissolving rapidly as a result of human activity. Normally the deep sea bottom is a chalky white. It's composed, to a large extent, of the mineral calcite (CaCO3) formed from the skeletons and shells of many planktonic organisms and corals. The seafloor plays a crucial role in controlling the degree of ocean acidification. The dissolution of calcite neutralizes the acidity of the CO2, and in the process prevents seawater from becoming too acidic. But these da ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
Plant hormone makes space farming a possibility

Installing life support the hands-free way

US-Russia space cooperation to go on despite Soyuz launch mishap

Escape capsule with Soyuz MS-10 crew hit ground 5 times before stopping

WATER WORLD
Taxi tests for Paul Allen's Stratolaunch successfully reach 90 mph

Probe commission rules out sabotage as possible cause of Soyuz failure

US astronaut Hague 'amazed' by Russian rescue team's work after Soyuz failure

Launches of Russian Rokot-2 rocket may begin again in 2021

WATER WORLD
Mars Express keeps an eye on curious cloud

NASA's InSight will study Mars while standing still

NASA Mars team actively listening out for Opportunity

Mars likely to have enough oxygen to support life: study

WATER WORLD
China's space programs open up to world

China's commercial aerospace companies flourishing

China launches Centispace-1-s1 satellite

China tests propulsion system of space station's lab capsules

WATER WORLD
Ministers endorse vision for the future of Europe in space

Space industry entropy

European Space Talks: we need more space!

Source reveals timing of OneWeb satellites' debut launch on Soyuz

WATER WORLD
Novel material could make plastic manufacturing more energy-efficient

Eye-tracking glasses provide a new vision for the future of augmented reality

Origami, 3D printing merge to make complex structures in one shot

Orbit Logic's scheduling software selected for NASA satellite servicing mission

WATER WORLD
Giant planets around young star raise questions about how planets form

Plan developed to characterize and identify ocean worlds

Discovering a previously unknown role for a source of magnetic fields

Ultra-close stars discovered inside a planetary nebula

WATER WORLD
SwRI team makes breakthroughs studying Pluto orbiter mission

ALMA maps temperature of Jupiter's icy moon Europa

NASA's Juno Mission Detects Jupiter Wave Trains

WorldWide Telescope looks ahead to New Horizons' Ultima Thule glyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.