Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Fraud-proof credit cards possible with quantum physics
by Staff Writers
Washington DC (SPX) Dec 16, 2014


A team of researchers from the Netherlands has harnessed the power of quantum mechanics to create a fraud-proof method for authenticating a physical 'key' that is virtually impossible to thwart. Image courtesy The Optical Society (OSA) and MESA+ Institute for Nanotechnology, Complex Photonic Systems Department of the University of Twente.

Credit card fraud and identify theft are serious problems for consumers and industries. Though corporations and individuals work to improve safeguards, it has become increasingly difficult to protect financial data and personal information from criminal activity. Fortunately, new insights into quantum physics may soon offer a solution.

As reported in The Optical Society's (OSA) new high-impact journal Optica, a team of researchers from the Netherlands has harnessed the power of quantum mechanics to create a fraud-proof method for authenticating a physical "key" that is virtually impossible to thwart.

This innovative security measure, known as Quantum-Secure Authentication, can confirm the identity of any person or object, including debit and credit cards, even if essential information (like the complete structure of the card) has been stolen. It uses the unique quantum properties of light to create a secure question-and-answer (Q&A) exchange that cannot be "spoofed" or copied.

The "Question-and-Answer" Security Game
Traditional magnetic-stripe-only cards are relatively simple to use but also simple to copy. Recently, banks have begun issuing so-called "smart cards" that include a microprocessor chip to authenticate, identify and enhance security. But regardless of how complex the code or how many layers of security, the problem remains that an attacker who obtains the information stored inside the card can copy or emulate it.

The new approach outlined in this paper avoids this risk entirely by using the peculiar quantum properties of photons that allow them to be in multiple locations at the same time to convey the authentication questions and answers. Though difficult to reconcile with our everyday experiences, this strange property of light can create a fraud-proof Q&A exchange, like those used to authorize credit card transactions.

"Single photons of light have very special properties that seem to defy normal behavior," said Pepijn Pinkse, a researcher from the University of Twente and lead author on the paper. "When properly harnessed, they can encode information in such a way that prevents attackers from determining what the information is."

The process works by transmitting a small, specific number of photons onto a specially prepared surface on a credit card and then observing the tell-tale pattern they make. Since -- in the quantum world -- a single photon can exist in multiple locations, it becomes possible to create a complex pattern with a few photons, or even just one.

Due to the quantum properties of light, any attempt by a hacker to observe the Q&A exchange would, as physicists say, collapse the quantum nature of the light and destroy the information being transmitted. This makes Quantum-Secure Authentication unbreakable regardless of any future developments in technology.

Making Cards Quantum Secure
To provide security in the real world, a credit card -- for example -- would be equipped with a paper-thin section of white paint containing millions of nanoparticles. Using a laser, individual photons of light are projected into the paint where they bounce around the nanoparticles like metal balls in a pinball machine until they escape back to the surface, creating the pattern used to authenticate the card.

If "normal" light is projected onto the area, an attacker could measure the entering pattern and return the correct response pattern. A bank would therefore not be able to see a difference between the real card and the counterfeit signal projected by the attacker.

However, if a bank sends a pattern of single "quantum" photons into the paint, the reflected pattern would appear to have more information - or points of light - than the number of photons projected. An attacker attempting to intercept the "question" would destroy the quantum properties of the light and capture only a fraction of the information needed to authenticate the transaction.

"It would be like dropping 10 bowling balls onto the ground and creating 200 separate impacts," said Pinkse. "It's impossible to know precisely what information was sent (what pattern was created on the floor) just by collecting the 10 bowling balls. If you tried to observe them falling, it would disrupt the entire system."

Quantum, But Not Difficult
According to Pinkse, this unique way of providing security is suitable for protecting government buildings, bank cards, credit cards, identification cards, and even cars. "The best thing about our method is that secrets aren't necessary. So they can't be filched either," he said.

Quantum-Secure Authentication could be employed in numerous situations relatively easily, since it uses simple and cheap technology -- such as lasers and projectors -- that is already available.

S. A. Goorden, M. Horstmann, A. P. Mosk, B. Skoric and P. W. H. Pinkse, "Quantum-Secure Authentication of a Physical Unclonable Key," Optica, 1, 6, 421-424 (2014)


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
The Optical Society
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
Finding the simple patterns in a complex world
Canberra, Canberra (SPX) Dec 09, 2014
An ANU mathematician has developed a new way to uncover simple patterns that might underlie apparently complex systems, such as clouds, cracks in materials or the movement of the stockmarket. The method, named fractal Fourier analysis, is based on new branch of mathematics called fractal geometry. The method could help scientists better understand the complicated signals that the bod ... read more


TIME AND SPACE
UK Plans to Drill Into Moon, Explore Feasibility of Manned Base

Carnegie Mellon Unveils Lunar Rover "Andy"

Why we should mine the moon

Young Volcanoes on the Moon

TIME AND SPACE
Flash-Memory Reformat Planned

Mars is a Four-Letter Word

Mars mountain may have arisen from lake sediments: NASA

Curiosity finds clues to how water helped shape Mars

TIME AND SPACE
France's Accor in strategic alliance with China's Huazhu

NASA's New Orion Spacecraft Completes First Spaceflight Test

FinalFlight to Scatter Ashes in the Stratosphere over Australia

Lockheed Martin-built Orion takes first steps on deep space journey

TIME AND SPACE
China's Long March puts satellite in orbit on 200th launch

Service module of China's returned lunar orbiter reaches L2 point

China Launches Second Disaster Relief Satellite

China expects to introduce space law around 2020

TIME AND SPACE
OPALS: Light Beams Let Data Rates Soar

ATV views Space Station as never before

ISS Enables Interplanetary Space Exploration

NASA's CATS Eyes Clouds, Smoke and Dust from the Space Station

TIME AND SPACE
Soyuz Installed at Baikonur, Expected to Launch Wednesday

ULA signs Orbital Sciences to launch Cygnus cargo mission to ISS

New Long March launcher on the drawing board

ADS to provide key elements for Vega launcher

TIME AND SPACE
Finding infant earths and potential life just got easier

Queen's scientist leads study of 'Super-Earth'

Finding infant earths and potential life just got easier

'Mirage Earth' exoplanets may have burned away chances for life

TIME AND SPACE
China developing space-based 3D printing machine

Airbus Defence and Space signs contract for Microwave Sounder instruments

BAE Systems to produce prototype counter-radar system

Researchers develop clothes that can monitor and transmit biomedical info on wearers




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.