. 24/7 Space News .
TECH SPACE
Folding molecules into screw-shaped structures
by Staff Writers
Bochum, Germany (SPX) Apr 29, 2016


Chemists have developed a method for folding molecules like sheets of paper. RUB researcher Nils Metzler-Nolte was part of the team. Image courtesy RUB, Marquard. For a larger version of this image please go here.

Artificial molecules are like sheets of paper. Chemists can fold them into specific shapes. Transferring the shape of one molecule to another, however, poses a significant challenge. An international research team describes the methods of winding up molecules into screw-shaped structures in the journal Angewandte Chemie. With the aid of artificial molecules, the researchers imitated the principles underlying the assigning a specific function to biomolecules in nature.

"The shape of the molecules determines their function considerably," says Prof Dr Nils Metzler-Nolte from the Ruhr-Universitat Bochum, one of the team members. An example from nature: "Changes to the shape of certain enzymes cause diseases like cancer and Alzheimer's."

Metzler-Nolte from the Chair of Inorganic Chemistry I collaborated with a team headed by Dr Ivan Huc and Dr Christos Tsiamantas from the Centre Nacional e la Recherche Scientifique (CNRS) and the University of Bordeaux, as well as Japanese colleagues at the University of Kumamoto.

Helix shape: a special challenge
Giving artificial molecules a specific helical shape has posed a considerable challenge, because it has been difficult to control if a molecule would wind up in the shape of a left-handed or right-handed screw. This is where the team from France, Germany and Japan made a breakthrough. Moreover, the researchers demonstrated a mechanism which can be used to make a helix transfer its handedness to another molecule through touch.

Folding molecules like a sheet of paper
The chemists worked with so-called aromatic oligoamides, i.e. aliphatic molecules derived from ammonia. Initially, the molecules assumed the shape of a straight string with knobbly protrusions. "Like a pearl necklace that lies tangled on a table," elaborates Metzler-Nolte. Subsequently, the researchers folded the molecule into the required spatial structure by integrating sulphur bridges in several positions, i.e. bonds between two sulphur atoms.

"This is how we fold a molecule like a sheet of paper which is creased again and again," compares Nils Metzler-Nolte. The researchers thus created both left-handed as well as right-handed helices.

Molecules transfer their shape to each other
In additional experiments, they linked two helices with each other on both ends. Even though those were the only points of contact, the structures of the linked molecules were assimilated. Both formed either a left-handed helix or a right-handed helix.

These principles - folding and cyclisation - are used in nature; this is how biomolecules with specific properties are generated. In future studies, the researchers intend to apply these techniques to design molecules for catalysis or energy conversion.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Ruhr-University Bochum
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
ORNL researchers discover new state of water molecule
Oak Ridge TN (SPX) Apr 29, 2016
Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states. In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of water molecules confined in hexagonal ult ... read more


TECH SPACE
First rocket made ready for launch at Vostochny spaceport

Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

Lunar lava tubes could help pave way for human colony

TECH SPACE
Opportunity completes mini-walkabout

Curiosity Mars Rover crosses rugged plateau

Mars' surface revealed in unprecedented detail

Space X's Red Dragons to start Mars exploration in 2018

TECH SPACE
US to move more assets into deep space over next 4 years

Simulators give astronauts glimpse of future flights

When technology bites back

Menstruation in spaceflight: Options for astronauts

TECH SPACE
South China city gears up for satellite tourism

China's long march into space

China's top astronaut goes to "space camp"

China open to Sino-US space cooperation

TECH SPACE
Russia delays space crew's return to Earth

15 years of Europe on the International Space Station

US-Russia Space Projects Set Example of Good Cooperation

Russia, US discuss boosting efficiency of cooperation at ISS

TECH SPACE
SpaceX vows to send capsule to Mars by 2018

Russia May Launch Upgraded Proton-M Rocket on May28

India to test Reusable Launch Vehicle in June

Soyuz demonstrates Arianespace mission flexibility

TECH SPACE
On the Road to Finding Other Earths

Kepler spacecraft recovered and returned to the K2 Mission

Lone planetary-mass object found in family of stars

University of Massachusetts Lowell PICTURE-B Mission Completed

TECH SPACE
It takes more than peer pressure to make large microgels fit in

Folding molecules into screw-shaped structures

Engineers develop micro-sized, liquid-metal particles for heat-free soldering

Speedy bridge repair









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.