. 24/7 Space News .
TECH SPACE
Flow phenomena on solid surfaces
by Staff Writers
Saarbrucken, Germany (SPX) Feb 12, 2016


Polystyrene droplets on two different substrates slowly adopt the same equilibrium contact angle, but the velocity and flow profiles of the molecules in the droplets are different in the two cases. Image courtesy Thomas Braun, Heidelberg. For a larger version of this image please go here.

This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics. The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

When liquids flow over solid surfaces, their flow velocity in the immediate vicinity of the surface is zero. 'By specially coating the surface, the boundary layer velocity can be increased. This also has the effect of reducing the shear forces within the liquid and of increasing its mean flow velocity. In the extreme case, the liquid behaves almost like a solid, but without exhibiting any change in its viscosity,' explains Karin Jacobs, Professor of Experimental Physics at Saarland University.

Her research group has been conducting experiments on polystyrene droplets with the aim of uncovering the details of how different surfaces affect boundary layer velocities and the slip behaviour of liquid films. 'Polystyrene is an important polymer that is used, for instance, to manufacture CD jewel cases,' says Dr. Joshua D. McGraw. The former postdoc in Jacobs' research group headed the study, which was a collaborative effort with members of the research team led by Ralf Seemann, Professor of Experimental Physics at Saarland University, and researchers at ESPCI Paris Tech.

McGraw placed individual droplets of polystyrene (PS) onto thin mica substrates, where the droplets assumed a flattened form and sizes more than thousand times smaller than a typical rain drop. They were then frozen in this state and subsequently transferred onto two new 'less PS-friendly' substrates which differed from one another not in their chemical composition, but only in the spatial arrangement of their atoms. On both substrates the droplets adopted an almost hemispherical form.

'Droplets always show a tendency to adopt an equilibrium form in which they exhibit a definite contact angle to the surface. This equilibrium state is determined by the boundary layer conditions,' explains Karin Jacobs. Although the polystyrene droplets showed the same equilibrium contact angle on both substrates, droplet profile measurements made using an atomic force microscope indicated significant differences in the manner in which the droplets contracted, transforming from their original shape with the smaller contact angle to the new hemispherical form.

'This can only mean that the molecules in the droplets move in two different ways on the two different surfaces, which in turn means that the velocity profiles in the two drops must be different,' say Dr. Martin Brinkmann and Dr. Tak Shing Chan from Ralf Seemann's group. 'However, the required resolution is not available experimentally. That's why we needed the support of the theoreticians in Paris.'

The researchers in Saarbrucken concluded that the velocity of the liquid at the solid surface is a key factor influencing the flow behaviour of such small droplets. The research colleagues at ESPCI Paris have managed to incorporate this into a theoretical model of the fluid dynamics. Martin Brinkmann and Tak Shing Chan were then able to use this theoretical description to conduct computer simulations that yield the molecular velocity field within a liquid drop.

'This enabled us to demonstrate that even atomic-scale modifications to a solid surface can alter the speeds with which molecules move in liquid systems that are many orders of magnitude thicker than the surface coating itself,' says Professor Jacobs, summarizing the results of the experiments.

The research results may help to optimize industrial processes, such as the extrusion of polymeric materials,' says Karin Jacobs. Extrusion involves pressing a plastic through a forming die similar to the way that pasta dough is pushed through a pasta press when making fresh spaghetti or macaroni. 'Once the dough has passed through the forming die, the strand expands as the material is now flowing more slowly,' explains Jacobs.

'This expansion of the material as it exits the die (known as "die swell") is usually undesirable in industrial applications, but it may be possible to suppress die swell by suitably coating the inner surfaces of the die.'

Research Paper: "Slip-mediated dewetting of polymer microdroplets"


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Saarland University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
A deep look into a single molecule
Braunschweig, Germany (SPX) Feb 10, 2016
The interaction of thermal energy from the environment with motional degrees of freedom is well known and often referred to as Brownian motion (also thermal motion). But in the case of polar molecules, the internal degrees of freedom - in particular the rotational quantum state - are also influenced by the thermal radiation. So far, the detection of the rotational state was only possible by dest ... read more


TECH SPACE
Edgar Mitchell, astronaut who walked on Moon, dead at 85

The forgotten moon landing that paved the way for today's space adventures

ASU satellite selected for NASA Space Launch System's first flight

Lunar Flashlight selected to fly as secondary payload on Exploration Mission-1

TECH SPACE
Opportunity climbing steeper slopes to reach science targets

Opportunity Reaches 12 Years on Mars!

4 people to live in an HERA habitat for 30 days at JSC

Sandy Selfie Sent from NASA Mars Rover

TECH SPACE
Are private launches changing the rocket equation?

NASA tests solar sail deployment for asteroid-surveying CubeSat NEA Scout

Mars or the Moon

The Orion Crew Module Pressure Vessel Ready For Testing

TECH SPACE
Last Launch for Long March 2F/G

China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

TECH SPACE
Russians spacewalk to retrieve biological samples

Russia to Deliver Three Advanced Spacesuits to ISS in 2016

Russian spacewalk marks end of ESA's exposed space chemistry

New Tool Provides Successful Visual Inspection of ISS Robot Arm

TECH SPACE
Space Launch System's first flight will launch small Sci-Tech cubesats

Initial launcher assembly clears Ariane 5 for its payload integration process

ILS Proton Successfully Launches Eutelsat 9B for Eutelsat

Pentagon Can't Overcome Its Russian Engines Addiction: McCain

TECH SPACE
The frigid Flying Saucer

Astronomers discover largest solar system

Lonely Planet Finds a Mum a Trillion Km Away

Follow A Live Planet Hunt

TECH SPACE
Body temperature triggers newly developed polymer to change shape

Making sense of metallic glass

Twisted X-rays unravel the complexity of helical structures

A deep look into a single molecule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.