. 24/7 Space News .
CHIP TECH
Flexoelectricity is more than Moore
by Staff Writers
Barcelona, Spain (SPX) Nov 26, 2015


File image.

The information revolution is synonymous with the traditional quest to pack more chips and increase computing power. This quest is embodied by the famous "Moore's law", which predicts that the number of transistors per chip doubles every couple of years and has held true for a remarkably long time.

However, as Moore's law approaches its limit, a parallel quest is becoming increasingly important. This latter quest is nick-named "more than Moore", and it aims to add new functionalities (not just transistors) within each chip by integrating smart materials on top of the ubiquitous and still indispensable silicon base.

Among these so-called smart materials piezoelectrics stand out for their ability to convert a mechanical deformation into a voltage (which can be used to harvest energy to feed the battery) or, conversely, generate a deformation when a voltage is applied to them (which can be used, for example, in piezoelectric fans for cooling down the circuit). However, the integration of piezoelectricity with silicon technology is extremely challenging.

The range of piezoelectric materials to choose from is limited, and the best piezo electrics are all lead based ferroelectric materials, and their toxicity poses serious concerns. Moreover, their piezoelectric properties are strongly temperature-dependent, making them difficult to implement in the hot environment of a typical computer processor, whose junction temperature can reach up to 150 Celsius.

There exists, however, another form of electromechanical coupling that allows a material to polarize in response to a mechanical bending moment, and, conversely, to bend in response to an electric field. This property is called "flexoelectricity", and though it has been known for nearly half a century, it has been largely ignored because it is a relatively weak effect of little practical significance at the macroscale.

However, at the nanoscale flexoelectricity can be as big as or bigger than piezoelectricity; this is easy to understand if we consider that bending something thick is very difficult, but bending something thin is very easy.

In addition, flexoelectricity offers many desirable properties: it is a universal property of all dielectrics, meaning that one needs not use toxic lead-based materials, and flexoelectricity is more linear and temperature-independent than the piezoelectricity of a ferroelectric.

Researchers from the Catalan Institute of Nanoscience and Nanotechnology (ICN2), a research center awarded as Severo Ochoa Excellence Center and placed in the Campus of the Universitat Autonoma de Barcelona (UAB), in collaboration with the University of Cornell (USA) and the University of Twente (Netherlands), have now managed to produce the world's first integrated flexoelectric microelectromechanical system (MEMS) on silicon.

They have found that, at the nanoscale, the desirable attributes of flexoelectricity are maintained, while the figure of merit (bending curvature divided by electric field applied) of their first prototype is already comparable to that of the state of the art piezoelectric bimorph cantilevers.

Additionally, the universality of flexoelectricity implies that all high-k dielectric materials used currently in transistor technology should also be flexoelectric, thus providing an elegant route to integrating "intelligent" electromechanical functionalities within already existing transistor technology. The results are published today by Nature Nanotechnology.

The project, led by Dr Umesh Bhaskar and ICREA Professor Gustau Catalan, from the ICN2 Oxide Nanoelectronics Group, was funded by an European Research Council (ERC) Consolidator Grant and a Spanish Project from Plan Nacional de Excelencia Investigadora, as well as by national grants for the US and Dutch teams.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Universitat Autonoma de Barcelona
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Photons on a chip set new paths for secure communications
Melbourne, Australia (SPX) Nov 23, 2015
Researchers from RMIT University in Melbourne have helped crack the code to ultra-secure telecommunications of the future in an international research project that could also expedite the advent of quantum computing. A team co-led by RMIT MicroNano Research Facility Director Professor David Moss has added a new twist to create photon pairs that fit on a tiny computer chip. The breakt ... read more


CHIP TECH
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

CHIP TECH
ExoMars prepares to leave Europe for launch site

Tracking down the 'missing' carbon from the Martian atmosphere

Mars to lose its largest moon, Phobos, but gain a ring

Study: Mars to become a ringed planet following death of its moon

CHIP TECH
Aerojet Rocketdyne tapped for spacecraft's crew module propulsion

Brits Aim for the Stars with Big Bucks on Offer to Conquer Final Frontier

XCOR develops Lynx Simulator

Orion ingenuity improves manufacturing while reducing mass

CHIP TECH
China's scientific satellites to enter uncharted territory

China to launch Dark Matter Satellite in mid-December

China to better integrate satellite applications with Internet

China's satellite expo opens

CHIP TECH
Russian-US Space Collaboration Intact Despite Chill in Bilateral Ties

ISS EarthKAM ready for student imaging request

Partners in Science: Private Companies Conduct Valuable Research on the Space Station

SAGE III Leaves Langley for Journey to ISS

CHIP TECH
Vega receives the LISA Pathfinder payload for its December 2 flight

Rocket launch demonstrates new capability for testing technologies

Rocket launch demonstrates new capability for testing technologies

NASA calls on SpaceX to send astronauts to ISS

CHIP TECH
Retro Exo and Its Originators

How DSCOVR Could Help in Exoplanet Hunting

Forming planet observed for first time

UA researchers capture first photo of planet in making

CHIP TECH
Bringing the chaos in light sources under control

SSL selected to provide new high throughput satellite to Telesat

Puffed rice compaction unveils new materials science phenomenon

Advancing the Design and Modeling of Complex Systems









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.