Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















CHIP TECH
Five times the computing power
by Staff Writers
Linkoping, Sweden (SPX) Jul 24, 2017


Carl Ingemarsson, PhD Student Computer Engineering (top) Oscar Gustafsson, senior lecturer Computer Engineering (lower)

Researchers at Linkoping University have developed a method to increase by a factor of five the computing power of a standard algorithm when performed in one type of standard chip, FPGA. The new method is both simple and smart, but the road to publication has been long.

We are dealing with a programmable integrated circuit known as an "FPGA", which is an abbreviation for "field-programmable gate array". This consists of a matrix of logical gates that can be programmed in situ, and can be reprogrammed an unlimited number of times. The first FPGAs came onto the market in 1985, and sales since then have increased dramatically. The market is now dominated by a couple of major players, and is expected to amount to USD 9.8 billion in 2020 (Wikipedia). The researchers have increased in these chips the speed of an algorithm known as the "fast Fourier transform", which is used in spectral analysis, radar technology and telecommunication.

"Until now, people have believed that once an FPGA is full it cannot accommodate any more. If you want new functionality in this case, you have to completely rebuild the hardware, which is expensive," says Oscar Gustafsson, senior lecturer in the Department of Computer Engineering at Linkoping University.

But Carl Ingemarsson, a PhD student at the department, had other ideas. As an undergraduate several years ago, he was challenged to increase the speed of calculation in an FPGA. If the lab group could manage to reach a frequency greater than 450 MHz, they wouldn't have to carry out the final lab in the course.

"This was what was needed to convince me to examine in depth the way the logic is represented inside the chip," he says.

He achieved the frequency, skipped the final lab, and at the same time laid the foundation for his doctoral project. The result is that FPGAs today can be made to work five times as fast, or to deal with five times the number of calculations. While it's true that Carl has only confirmed this in two families of FPGA, there is no reason to believe that it is not also the case for all other families.

"This advance will save huge sums for demanding calculations in industry, and will make it possible to implement new functionality without needing to replace the hardware," says Oscar Gustafsson.

Carl Ingemarsson's method is based on ensuring that the signal takes a smarter route through the various building blocks inside the chip.

"Normally, you choose an algorithm that can carry out the desired calculations, and then build up the structure, the architecture, using the required blocks. This is then transferred to the FPGA. But we have also looked at how the logic is built up, the routes the signals take, and what happens to them inside the chip. We have then adapted the architecture and the mapping onto the chip using the results of this analysis."

A clever change in the signal routes gives the chip a capacity that is five times greater for each hardware unit.

"It should be possible to automate this optimisation of the chip," says Carl Ingemarsson.

The method was, however too simple, or too ingenious, for the scientific reviewers.

"At one level, it might seem that we haven't changed anything, we're still using the same standard components, but we have increased the computing power by a factor of five. This has made it has difficult to get our article published in a scientific journal," Oscar Gustafsson explains.

But the solution was so clever that someone managed to plagiarise the work before the IEEE decided to publish it. It suddenly appeared at an IEEE conference, using copies of the diagrams, with parts of the text swapped out and completely different authors.

All the support documentation in the form of original files and original diagrams was, however, available at LiU: the plagiarism was discovered, and the researcher suspended. The damage had been done, however, and publication of the original article was delayed by at least a year.

Research Report: Efficient FPGA Mapping of Pipeline SDF FFT Cores

CHIP TECH
Researchers develop dynamic templates critical to printable electronics technology
Urbana IL (SPX) Jul 18, 2017
When it comes to efficiency, sometimes it helps to look to Mother Nature for advice - even in technology as advanced as printable, flexible electronics. Researchers at the University of Illinois have developed bio-inspired dynamic templates used to manufacture organic semiconductor materials that produce printable electronics. It uses a process similar to biomineralization - the way that b ... read more

Related Links
Linkoping University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
NASA Offers Space Station as Catalyst for Discovery in Washington

Counting calories in space

As the world embraces space, the 50 year old Outer Space Treaty needs adaptation

Dutch project tests floating cities to seek more space

CHIP TECH
ISRO Develops Ship-Based Antenna System to Track Satellite Launches

Aerojet Rocketdyne tests Advanced Electric Propulsion System

After two delays, SpaceX launches broadband satellite for IntelSat

Spiky ferrofluid thrusters can move satellites

CHIP TECH
For Moratorium on Sending Commands to Mars, Blame the Sun

Tributes to wetter times on Mars

Opportunity will spend three weeks at current location due to Solar Conjunction

Curiosity Mars Rover Begins Study of Ridge Destination

CHIP TECH
China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

CHIP TECH
ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

Iridium Poised to Make Global Maritime Distress and Safety System History

100M Pound boost for UK space sector

CHIP TECH
Using water displacement as the 3-D shape sensor for complex objects

Japanese engineers develop headset-less VR system

Spacepath Communications Announces Innovative Frequency Converter Systems

Nature-inspired material uses liquid reinforcement

CHIP TECH
A New Search for Extrasolar Planets from the Arecibo Observatory

Gulf of Mexico tube worm is one of the longest-living animals in the world

Molecular Outflow Launched Beyond Disk Around Young Star

Big, shape-shifting animals from the dawn of time

CHIP TECH
New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis

Juno Completes Flyby over Jupiter's Great Red Spot




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement