. 24/7 Space News .
INTERNET SPACE
Fish-eyed lens cuts through the dark
by Staff Writers
Madison WI (SPX) Apr 22, 2016


The group emulated the fish's crystal cups by engineering thousands of miniscule parabolic mirrors, each as tall as a grain of pollen. Jiang's team then shaped arrays of the light-collecting structures across the surface of a uniform hemispherical dome. The arrangement, inspired by the superposition compound eyes of lobsters, concentrates incoming light to individual spots, further increasing intensity.

Combining the best features of a lobster and an African fish, University of Wisconsin-Madison engineers have created an artificial eye that can see in the dark. And their fishy false eyes could help search-and-rescue robots or surgical scopes make dim surroundings seem bright as day.

Their biologically inspired approach, published March 14, 2016 in the Proceedings of the National Academy of Sciences, stands apart from other methods in its ability to improve the sensitivity of the imaging system through the lenses rather than the sensor component.

Amateur photographers attempting to capture the moon with their cellphone cameras are familiar with the limitations of low-light imaging. The long exposure time required for nighttime shots causes minor shakes to produce extremely blurry images. Yet, fuzzy photos aren't merely an annoyance. Bomb-diffusing robots, laparoscopic surgeons and planet-seeking telescopes all need to resolve fine details through almost utter darkness.

"These days, we rely more and more on visual information. Any technology that can improve or enhance image-taking has great potential," says Hongrui Jiang, professor of electrical and computer and biomedical engineering at UW-Madison and the corresponding author on the study.

Most attempts to improve night vision tweak the "retinas" of artificial eyes - such as changing the materials or electronics of a digital camera's sensor - so they respond more strongly to incoming packets of light.

However, rather than interfering with efforts to boost sensitivity at the back end, Jiang's group set out to increase intensity of incoming light through the front end, the optics that focus the light on the sensor. They found inspiration for the strategy from two aquatic animals that evolved different strategies to survive and see in murky waters.

Elephantnosed fishes resemble river-dwelling Cyrano de Bergerac impersonators. Looking between their prominent proboscises reveals two strikingly unusual eyes, with retinas composed of thousands of tiny crystal cups instead of the smooth surfaces common to most animals. These miniature vessels collect and intensify red light, which helps the fish discern its predators.

"We were thinking: 'Why don't we apply this idea? Can we enhance the intensity to concentrate the light?'" says Jiang, whose research is supported by the National Institutes of Health and UW-Madison.

The group emulated the fish's crystal cups by engineering thousands of miniscule parabolic mirrors, each as tall as a grain of pollen. Jiang's team then shaped arrays of the light-collecting structures across the surface of a uniform hemispherical dome. The arrangement, inspired by the superposition compound eyes of lobsters, concentrates incoming light to individual spots, further increasing intensity.

"We showed fourfold improvement in sensitivity," says Jiang. "That makes the difference between a totally dark image you can't see and an actually meaningful image."

In this case, the devices picked up a picture of UW-Madison's Bucky Badger mascot through what seemed like pitch-black darkness. The device could easily be incorporated into existing systems to visualize a variety of vistas under low light.

"It's independent of the imaging technology," says Jiang. "We're not trying to compromise among different factors. Any type of imager can use this."

Although superposition compound eyes are exquisitely sensitive, they typically suffer from less sharp vision. Increased intensity costs clarity when lots of light gets compressed down to individual pixels. To recover lost resolution, Jiang's group captured numerous raw images and processed the set with an algorithm to produce crisp, clear pictures.

The engineers in Jiang's lab - including Hewei Liu, the postdoctoral scholar who fabricated the lenses, and Yinggang Huang, who processed the super-resolution images - are working to refine the manufacturing process to further increase the sensitivity of the devices. With perfect precision, Jiang predicts that the artificial eyes could improve by at least an order of magnitude.

"It has always been very hard to make artificial superposition compound eyes because the curvature and alignment need to be absolutely perfect." says Jiang. "Even the slightest misalignment can throw off the entire system."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Wisconsin-Madison
Satellite-based Internet technologies






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
INTERNET SPACE
Computers in your clothes? A milestone for wearable electronics
Columbus OH (SPX) Apr 20, 2016
Researchers who are working to develop wearable electronics have reached a milestone: They are able to embroider circuits into fabric with 0.1 mm precision - the perfect size to integrate electronic components such as sensors and computer memory devices into clothing. With this advance, the Ohio State University researchers have taken the next step toward the design of functional textiles ... read more


INTERNET SPACE
Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

Lunar lava tubes could help pave way for human colony

The Moon thought to play a major role in maintaining Earth's magnetic field

INTERNET SPACE
Rover mini-walkabout to find clay mineral continues

Russia, Italy plan first bid to explore beneath mars surface in 2018

First light for ExoMars

First joint EU-Russian ExoMars mission to reach Mars orbit Oct 16

INTERNET SPACE
Space Subcommittee examines commercial challenges

A US Department of Space

NASA blasts Orion Service Module with giant horns

Concept's success buoys Commercial Crew's path to flight

INTERNET SPACE
China to become aerospace power by 2030

China plans to launch core module of space station around 2018

China set to launch "more livable" space lab in Q3

China aims for deeper space with new generation rockets

INTERNET SPACE
15 years of Europe on the International Space Station

BEAM successfully installed to the International Space Station

NASA to test first expandable habitat on ISS

Dragon and Cygnus To Meet For First Time In Space

INTERNET SPACE
Europe makes fourth attempt to launch Russian rocket

Sentinel-1B in position for liftoff

Arianespace cooperation with Russia remains smooth amid sanctions

Orbital ATK awarded major sounding rocket contract by NASA

INTERNET SPACE
Lone planetary-mass object found in family of stars

University of Massachusetts Lowell PICTURE-B Mission Completed

Stars strip away atmospheres of nearby super-Earths

1917 astronomical plate has first-ever evidence of exoplanetary system

INTERNET SPACE
Students observe damaged Hitomi X-ray satellite and debris

Electrons slide through the hourglass on surface of bizarre material

Simple 3-D fabrication technique for bio-inspired hierarchical structures

Laser source for biosensors









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.