. 24/7 Space News .
PHYSICS NEWS
First look at gravitational dance that drives stellar formation
by Staff Writers
Hull UK (SPX) Jul 07, 2017


Left: three color composite image of SDC13 where red, green and blue bands correspond to 70um HIGAL (Molinari et al. 2010), 24um Spitzer MIPSGAL (Carey et al. 2009) and 8um Spitzer GLIMPSE (Churchwell et al. 2009) maps respectively. The four dark, filamentary arms are clearly visible. Right: Brand new, high resolution map of SDC13 tracing the internal dense ammonia gas revealing cores dotted along all the filaments. Credit Credit: G. Williams et al. / University of Cardiff

Swirling motions in clouds of cold, dense gas have given, for the first time, an active insight into how gravity creates the compact cores from which stars form in the interstellar medium. The results will be presented, Thursday 6 July, by Gwen Williams at the National Astronomy Meeting at the University of Hull.

Williams, of Cardiff University, explains: "We've known for some time that dusty, filamentary cloud structures are ubiquitous in the Milky Way's interstellar medium. We also know that the densest of these filaments fragment into compact pockets of cold gas that then collapse under their own gravity to form individual stars. However, there's still been a question mark over how, exactly, this happens."

SDC13 is a remarkable cloud network of four filaments converging on a central hub, with a total mass of gas equivalent to a thousand of our Suns. Observations by Williams and colleagues at Cardiff University and the University of Manchester, using the Jansky Very Large Array (JVLA) and the Green Bank Telescope (GBT), have now captured the effects of gravity on ammonia gas moving within the SDC13 system.

Material is pulled from surrounding filaments and accreted onto cores dotted along the cloud structure, converting gravitational potential energy into kinetic energy in the process. Intense surges in the gas motion are observed at two-thirds of the cores that have yet to form stars.

Williams notes: "We believe that the same processes are at work at the filament junction, where both the largest internal motions of the gas and the most massive cores are found. We also speculate that strong acceleration gradients are generated at the hub centre resulting in large accumulation of matter and the formation of massive cores. Hence, our results reveal that this type of interstellar filament and hub system represents a privileged location for the formation of the most massive of stars in the Galaxy."

PHYSICS NEWS
LISA Gravitational-Wave Observatory Selected as ESA L3 Mission
Hannover, Germany (SPX) Jun 28, 2017
In a meeting on 20 June 2017 ESA's Science Programme Committee selected the space-based gravitational-wave detector "Laser Interferometer Space Antenna" (LISA) for ESA's third large (L3) mission in the "Cosmic Vision" plan. LISA will consist of three spacecraft separated by millions of kilometers. They will precisely monitor their relative distance changes with lasers to detect gravitation ... read more

Related Links
Royal Astronomical Society
The Physics of Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

PHYSICS NEWS
Don't look down: glass bottom skywalk thrills in China

NASA Statement on National Space Council

Silicon-on-Seine: world's biggest tech incubator opens in Paris

India, Portugal Shake Hands on Space Cooperation

PHYSICS NEWS
On the road to creating an electrodeless spacecraft propulsion engine

Dragon Splashes Down to Complete Resupply Mission

Ariane 5 launch proves reliability and flies new fairing

80th consecutive success for Ariane 5 with launch of Hellas Sat, Inmarsat and ISRO

PHYSICS NEWS
Mars surface 'more uninhabitable' than thought: study

Mars Rover Opportunity continuing science campaign at Perseverance Valley

The Niagara Falls of Mars once flowed with lava

Russian Devices for ExoMars Mission to Be Ready in Fall 2017

PHYSICS NEWS
China prepares to launch second heavy-lift carrier rocket

China heavy-lift carrier rocket launch fails: state media

Yuanwang-3 completes ship check mission, ready for Chang'e-5 lunar probe launch

China to launch Long March-5 Y2 in early July

PHYSICS NEWS
HTS Capacity Lease Revenues to Reach More Than $6 Billion by 2025

SES Transfers Capacity from AMC-9 Satellite Following Significant Anomaly

Second launch doubles number of Iridium NEXT satellites in orbit to 20

OneWeb inaugurates production line Assembly, Integration, and Test of OneWeb satellites

PHYSICS NEWS
SES and MDA Announce First Satellite Life Extension Agreement

Space Debris Mitigation Mission Successfully Launched on June 23rd, 2017

Seawater makes ancient Roman concrete stronger

Scanning the surface of lithium titanate

PHYSICS NEWS
Why Does Microorganism Prefer Meager Rations Over Rich Ones

NASA diligently tracks microbes inside the International Space Station

Complex Organic Molecules Found On "Space Hamburger"

Extreme Atmosphere Stripping May Limit Exoplanets' Habitability

PHYSICS NEWS
New Mysteries Surround New Horizons' Next Flyby Target

Mid-infrared images from the Subaru telescope extend Juno spacecraft discoveries

Earth-based Views of Jupiter to Enhance Juno Flyby

NASA's Juno Spacecraft to Fly Over Jupiter's Great Red Spot July 10









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.