. 24/7 Space News .
EARTH OBSERVATION
First detection of rain over the ocean by navigation satellites
by Staff Writers
Potsdam, Germany (SPX) Dec 21, 2018

This is a photo of TechDemoSat-1 flight ready in a cleanroom in March 2013.

In order to analyse climate change or provide information on natural hazards, for example, it is important for researchers to gather knowledge about rain. Better knowledge of precipitation and its distribution could, for example, help protect against river flooding. On land, monitoring stations can provide data by collecting precipitation. At sea, it's not so easy.

A new approach by a team around Milad Asgarimehr, who works in the GFZ section for Space Geodetic Techniques and at the Technical University of Ber-lin, together with researchers from the Earth System Research Laboratory of the National Oceanic and Atmospheric Administration of the USA (NOAA) and the University of Potsdam, uses information contained in radar signals from GNSS satellites (Global Navigation Satellite System) to detect rain over the sea.

The technology is called GNSS Reflectometry. It is an innovative satellite re-mote sensing method with a broad spectrum of geophysical applications. As-garimehr and his colleagues have now published their results in the journal Geophysical Research Letters.

According to the researchers, the new approach could help to monitor atmos-pheric precipitation better than before. Asgarimehr: "Our research can serve as a starting point for the development of an additional rain indicator. We can pro-vide precipitation information using GNSS Reflectometry with unprecedented temporal resolution and spatial coverage".

"GNSS are 'all-weather navigation systems'", explains Asgarimehr.

"A long-held basic assumption was therefore that their signals are composed in such a way that they are not noticeably attenuated by clouds or typical precipitation in the atmosphere and therefore cannot detect precipitation". The new study there-fore uses a different effect to detect rain over the sea: The roughness of the sea surface.

GNSS reflectometry can measure sea surface roughness
That surface is 'rough' mainly because winds create waves on it. The strength of the satellite signals reflected by the surface is inversely proportional to their roughness: the more and the stronger the waves, the weaker the reflected signal. Recently, researchers were able to prove that it is possible to determine the wind speed over the oceans from measurements of the roughness of its surface.

Raindrops falling on a sea surface also change its roughness. Milad Asgarimehr and the team around him asked themselves: "Can GNSS Reflectometry detect precipitation over oceans?" This is also the title of their recently published study.

If the answer is yes, GNSS Reflectometry satellites could detect rain almost like an observer watching raindrops disturb the mirror image of the moon on the surface of a lake at night. However, there is one major difference: unlike moonlight, GNSS signals are able to penetrate the clouds.

A new theoretical model comes to the rescue
During the analysis of data from the navigation satellite TDS-1 (TechDemoSat-1), Asgarimehr found evidence that rain is detectable over the oceans if the winds are not too strong. However, his research still lacked a theoretical foun-dation.

"For a long time it was thought that GNSS Reflectometry measurements should be insensitive to the small-scale surface roughness caused by raindrops on the sea surface", explains Asgarimehr. But the publication of a new theoretical model in 2017 provided a plausible estimate of the physics of the scattering of radar signals on a sea surface disturbed by weak winds.

Research paper


Related Links
GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre
Earth Observation News - Suppiliers, Technology and Application


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARTH OBSERVATION
HyperScout demonstrates that satellite imagery can be processed in space
Amsterdam, Netherlands (SPX) Dec 19, 2018
HyperScout 1, the first miniaturized hyperspectral imager for space, successfully demonstrated that it is possible to process the images that are gathered by a satellite on board. By knowing the position of the satellite and in which direction it points, the instrument knows what it is looking at and can interpret the data, thus eliminating the need to download the data. The HyperScout 1 camera, launched in February on board the GOMX-4B satellite, produced the so-called Analysis Ready Data (ARD) o ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
NASA astronaut, crewmates return to Earth after 197-Day mission in space

Queen guitarist Brian May releases tribute to NASA spacecraft

Russian Cosmonaut Dismisses Rumours About ISS Crew, Hole in Soyuz Spaceship

Astronauts land from ISS stint marred by air leak, rocket failure

EARTH OBSERVATION
New Materials Architectures Sought to Cool Hypersonic Vehicles

NZ-Dutch space startup raises 3M dollars

Roscosmos to submit super-heavy rocket project to Government

Elon Musk's SpaceX set to raise $500 mn: report

EARTH OBSERVATION
InSight places its first instrument on Mars

InSight Engineers Have Made a Martian Rock Garden

Opportunity team performs more frequent communication attempts throughout each day

Planetary scientists assist in capturing image of Insight from orbit

EARTH OBSERVATION
China's Chang'e-4 probe enters lunar orbit

China launches rover for first far side of the moon landing

Evolving Chinese Space Ecosystem To Foster Innovative Environment

China sends 5 satellites into orbit via single rocket

EARTH OBSERVATION
ESA astronaut Alexander Gerst returns to Earth for the second time

Spacecraft Repo Operations

Scaled back OneWeb constellation Not to affect number of Soyuz boosters

Update from ESA Council, December 2018

EARTH OBSERVATION
Sustainable 'plastics' are on the horizon

Predicting the properties of a new class of glasses

MIT researchers develop novel 3D printing method for transparent glass

Silver nanowires promise more comfortable smart textiles

EARTH OBSERVATION
Narrowing the universe in the search for life

A young star caught forming like a planet

Planets with Oxygen Don't Necessarily Have Life

Where did the hot Neptunes go

EARTH OBSERVATION
Ultima Thule's First Mystery: Lack of a 'Light Curve'

Teledyne e2v has provided New Horizons with two specialist image sensors

New Horizons Takes the Inside Course to Ultima Thule

Most Distant Solar System Object Ever Observed









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.