. 24/7 Space News .
TIME AND SPACE
First Successful Test of General Relativity Near Supermassive Black Hole
by Staff Writers
Garching, Germany (SPX) Jul 30, 2018

This simulation shows the orbits of stars very close to the supermassive black hole at the heart of the Milky Way.

Obscured by thick clouds of absorbing dust, the closest supermassive black hole to the Earth lies 26,000 light-years away at the centre of the Milky Way. This gravitational monster, which has a mass four million times that of the Sun, is surrounded by a small group of stars orbiting around it at high speed.

This extreme environment - the strongest gravitational field in our galaxy - makes it the perfect place to explore gravitational physics, and particularly to test Einstein's general theory of relativity.

New infrared observations from the exquisitely sensitive GRAVITY, SINFONI and NACO instruments, developed under the lead of the Max Planck Institute for Extraterrestrial Physics (MPE), have now allowed astronomers to follow one of these stars, called S2, as it passed very close to the black hole during May 2018.

At the closest point this star was at a distance of less than 20 billion kilometres from the black hole and moving at a speed in excess of 25 million kilometres per hour - almost three percent of the speed of light.

The team compared the position and velocity measurements from GRAVITY and SINFONI respectively, along with previous observations of S2 using other instruments, with the predictions of Newtonian gravity, general relativity and other theories of gravity. The new results are inconsistent with Newtonian predictions and in excellent agreement with the predictions of general relativity.

These extremely precise measurements were made by an international team led by Reinhard Genzel (MPE) in Garching, Germany, in conjunction with collaborators around the world, at the Paris Observatory-PSL, the Universite Grenoble Alpes, CNRS, the Max Planck Institute for Astronomy, the University of Cologne, the Portuguese CENTRA (Centro de Astro?sica e Gravitacao) and ESO. The observations are the culmination of a 26-year series of ever-more-precise observations of the centre of the Milky Way using ESO instruments.

"This is the second time that we have observed the close passage of S2 around the black hole in our galactic centre. But this time, because of much improved instrumentation, we were able to observe the star with unprecedented resolution," explains Genzel. "We have been preparing intensely for this event over several years, as we wanted to make the most of this unique opportunity to observe general relativistic effects."

The new measurements clearly reveal an effect called gravitational redshift. Light from the star is stretched to longer wavelengths by the very strong gravitational field of the black hole. And the change in the wavelength of light from S2 agrees precisely with that predicted by Einstein's general theory of relativity. This is the first time that this deviation from the predictions of the simpler Newtonian theory of gravity has been observed in the motion of a star around a supermassive black hole.

The team used SINFONI to measure the velocity of S2 towards and away from Earth and the GRAVITY instrument in the VLT Interferometer (VLTI) to make extraordinarily precise measurements of the changing position of S2 in order to define the shape of its orbit. GRAVITY creates such sharp images that it can reveal the motion of the star from night to night as it passes close to the black hole - 26,000 light-years from Earth.

"Our first observations of S2 with GRAVITY, about two years ago, already showed that we would have the ideal black hole laboratory," adds Frank Eisenhauer (MPE), principal investigator of GRAVITY and the SINFONI spectrograph.

"During the close passage, we could even detect the faint glow around the black hole on most of the images, which allowed us to precisely follow the star on its orbit, ultimately leading to the detection of the gravitational redshift in the spectrum of S2."

More than one hundred years after he published his paper setting out the equations of general relativity, Einstein has been proved right once more - in a much more extreme laboratory than he could have possibly imagined!

"Due to the extremely strong gravitational field we expect to see the effects of general relativity - but only if we can look close enough," says Stefan Gillessen, "This is why we needed to push the technology. With SINFONI we can measure the radial velocity of stars very accurately and GRAVITY gives us extremely sharp images and accurate positions."

Continuing observations are expected to reveal another relativistic effect very soon - a small rotation of the star's orbit, known as Schwarzschild precession - as S2 moves away from the black hole.

Xavier Barcons, ESO's Director General, concludes: "ESO has worked with Reinhard Genzel and his team and collaborators in the ESO Member States for over a quarter of a century. It was a huge challenge to develop the uniquely powerful instruments needed to make these very delicate measurements and to deploy them at the VLT in Paranal. The discovery announced is the very exciting result of a remarkable partnership."

Research Report: "Detection of the Gravitational Redshift in the Orbit of the Star S2 Near the Galactic Centre Massive Black Hole," GRAVITY Collaboration, 2018 July 26, Astronomy and Astrophysics


Related Links
Max Planck Institute For Extraterrestrial Physics
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
NASA's Fermi Traces Source of Cosmic Neutrino to Monster Black Hole
Greenbelt MD (SPX) Jul 13, 2018
For the first time ever, scientists using NASA's Fermi Gamma-ray Space Telescope have found the source of a high-energy neutrino from outside our galaxy. This neutrino traveled 3.7 billion years at almost the speed of light before being detected on Earth. This is farther than any other neutrino whose origin scientists can identify. High-energy neutrinos are hard-to-catch particles that scientists think are created by the most powerful events in the cosmos, such as galaxy mergers and material falli ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Sky's no limit: Japan firm to fly wedding plaques into space

NASA to Name Astronauts Assigned to First Boeing, SpaceX Flights

Boeing's quest to take astronauts to space station hits snag

NASA Marshall Awards 43 New Small Innovation and Technology Research Proposals

TIME AND SPACE
SpaceX launches, lands rocket in challenging conditions

Russia's Khrunichev Center Develops Concept of Reusable Rocket

Latest Blue Origin Launch Tests Technologies of Interest to Space Exploration

Roscosmos' Research Center's Staff Suspected of Leaking Data Abroad

TIME AND SPACE
Is Mars' Soil Too Dry to Sustain Life?

Scientists at Johns Hopkins Discover Why Mars Is So Dusty

NASA's MAVEN Spacecraft Finds That "Stolen" Electrons Enable Unusual Aurora on Mars

Liquid water lake discovered on Mars

TIME AND SPACE
China developing in-orbit satellite transport vehicle

PRSS-1 Satellite in Good Condition

China readying for space station era: Yang Liwei

China launches new space science program

TIME AND SPACE
Rockwell Collins and Iridium Partner to Deliver Next-Generation Aviation Services

27 Satellites in 3 Years: Indian Private Sector Shifts Focus to Space Projects

Aerospace Workforce Training A National Mandate for 2018

Head of Roscosmos Research Center Paison Hands in Application for Dismissal

TIME AND SPACE
Researchers unravel more mysteries of metallic hydrogen

NASA Interns Develop and Release Navigation Software Simulating Star Tracker Navigation

Millennium Space Systems ALTAIR Pathfinder Satellite Surpasses 10,000 Hours in Orbit

Manipulating single atoms with an electron beam

TIME AND SPACE
WSU researcher sees possibility of moon life

How Can You Tell If That ET Story Is Real

X-ray Data May Be First Evidence of a Star Devouring a Planet

Glowing bacteria on deep-sea fish shed light on evolution, 'third type' of symbiosis

TIME AND SPACE
'Ribbon' wraps up mystery of Jupiter's magnetic equator

Radiation Maps of Jupiter's Moon Europa: Key to Future Missions

The True Colors of Pluto and Charon

Dozen new Jupiter moons declared









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.