. 24/7 Space News .
TIME AND SPACE
First Signs of Weird Quantum Property of Empty Space
by Staff Writers
Garching, Germany (SPX) Nov 30, 2016


Colour composite photo of the sky field with the lonely neutron star RX J1856.5-3754 and the related cone-shaped nebula. It is based on a series of exposures obtained with the multi-mode FORS2 instrument at VLT KUEYEN through three different optical filters. The trail of an asteroid is seen in the field with intermittent blue, green and red colours. Image courtesy ESO. For a larger version of this image please go here.

By studying the light emitted from an extraordinarily dense and strongly magnetised neutron star using ESO's Very Large Telescope, astronomers may have found the first observational indications of a strange quantum effect, first predicted in the 1930s. The polarisation of the observed light suggests that the empty space around the neutron star is subject to a quantum effect known as vacuum birefringence.

A team led by Roberto Mignani from INAF Milan (Italy) and from the University of Zielona Gora (Poland), used ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile to observe the neutron star RX J1856.5-3754, about 400 light-years from Earth [1].

Despite being amongst the closest neutron stars, its extreme dimness meant the astronomers could only observe the star with visible light using the FORS2 instrument on the VLT, at the limits of current telescope technology.

Neutron stars are the very dense remnant cores of massive stars - at least 10 times more massive than our Sun - that have exploded as supernovae at the ends of their lives. They also have extreme magnetic fields, billions of times stronger than that of the Sun, that permeate their outer surface and surroundings.

These fields are so strong that they even affect the properties of the empty space around the star. Normally a vacuum is thought of as completely empty, and light can travel through it without being changed. But in quantum electrodynamics (QED), the quantum theory describing the interaction between photons and charged particles such as electrons, space is full of virtual particles that appear and vanish all the time. Very strong magnetic fields can modify this space so that it affects the polarisation of light passing through it.

Mignani explains: "According to QED, a highly magnetised vacuum behaves as a prism for the propagation of light, an effect known as vacuum birefringence."

Among the many predictions of QED, however, vacuum birefringence so far lacked a direct experimental demonstration. Attempts to detect it in the laboratory have not yet succeeded in the 80 years since it was predicted in a paper by Werner Heisenberg (of uncertainty principle fame) and Hans Heinrich Euler.

"This effect can be detected only in the presence of enormously strong magnetic fields, such as those around neutron stars. This shows, once more, that neutron stars are invaluable laboratories in which to study the fundamental laws of nature." says Roberto Turolla (University of Padua, Italy).

After careful analysis of the VLT data, Mignani and his team detected linear polarisation - at a significant degree of around 16% - that they say is likely due to the boosting effect of vacuum birefringence occurring in the area of empty space surrounding RX J1856.5-3754 [2].

Vincenzo Testa (INAF, Rome, Italy) comments: "This is the faintest object for which polarisation has ever been measured. It required one of the largest and most efficient telescopes in the world, the VLT, and accurate data analysis techniques to enhance the signal from such a faint star."

"The high linear polarisation that we measured with the VLT can't be easily explained by our models unless the vacuum birefringence effects predicted by QED are included," adds Mignani.

"This VLT study is the very first observational support for predictions of these kinds of QED effects arising in extremely strong magnetic fields," remarks Silvia Zane (UCL/MSSL, UK).

Mignani is excited about further improvements to this area of study that could come about with more advanced telescopes: "Polarisation measurements with the next generation of telescopes, such as ESO's European Extremely Large Telescope, could play a crucial role in testing QED predictions of vacuum birefringence effects around many more neutron stars."

"This measurement, made for the first time now in visible light, also paves the way to similar measurements to be carried out at X-ray wavelengths," adds Kinwah Wu (UCL/MSSL, UK).

This research was presented in the paper entitled "Evidence for vacuum birefringence from the first optical polarimetry measurement of the isolated neutron star RX J1856.5-3754", by R. Mignani et al., to appear in Monthly Notices of the Royal Astronomical Society.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
European Southern Observatory
Understanding Time and Space






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Researchers found mathematical structure that was thought not to exist
Espoo, Finland (SPX) Nov 16, 2016
In the 1970s, a group of mathematicians started developing a theory according to which codes could be presented at a level one step higher than the sequences formed by zeros and ones: mathematical subspaces named q-analogs. For a long time, no applications were found - or were not even searched for - for the theory until ten years ago, when it was understood that they would be useful in th ... read more


TIME AND SPACE
Orbital ATK Ends 2016 with Three Successful Cargo Resupply Missions to ISS

Space Food Bars Will Keep Orion Weight Off and Crew Weight On

Russian Space Sector Overcomes Failures

Embry-Riddle Students Join Project PoSSUM to Test Prototype Spacesuits in Zero-G

TIME AND SPACE
Russia to Launch Fewer Spacecraft in 2016 Than US, China for First Time

Soyuz-U Carrier Rocket Installed to Baikonur Launching Pad

Ariane 5's impressive 75 in-a-row launch record

Vega ready for GOKTURK-1A to be encapsulated

TIME AND SPACE
CaSSIS Sends First Images from Mars Orbit

First views of Mars show potential for ESA's new orbiter

ExoMars space programme needs an extra 400 million euros

Opportunity team onsidering a new route due to boulder field

TIME AND SPACE
China launches 4th data relay satellite

Material and plant samples retrieved from space experiments

Chinese astronauts return to earth after longest mission

China completes longest manned space mission yet

TIME AND SPACE
ESA looks at how to catch a space entrepreneur

Two-year extensions confirmed for ESA's science missions

Thales and SENER to jointly supply optical payloads for space missions

Citizens' space debate: the main findings and the future

TIME AND SPACE
Laser-based Navigation Sensor Could Be Standard for Planetary Landing Missions

Bringing silicon to life

British Scientists Develop a 3D Metal Printer That Works in Space

Scientists shrink electron gun to matchbox size

TIME AND SPACE
Biologists watch speciation in a laboratory flask

Life before oxygen

Timing the shadow of a potentially habitable extrasolar planet

Fijian ants began farming 3 million years ago

TIME AND SPACE
New analysis adds to support for a subsurface ocean on Pluto

Pluto follows its cold, cold heart

New Analysis Supports Subsurface Ocean on Pluto

Mystery solved behind birth of Saturn's rings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.