. 24/7 Space News .
TIME AND SPACE
Finding the lightest superdeformed triaxial atomic nucleus
by Staff Writers
Warsaw, Poland (SPX) Oct 21, 2016


Atomic nuclei do not in any case look like a perfect sphere (top). With a larger number of protons and neutrons the nuclei can be flattened or extended along one, two or three axes. The latter case (bottom right) is known as superdeformed triaxial. Image courtesy IFJ PAN. For a larger version of this image please go here.

The nuclei of atoms of heavy elements do not necessarily take a spherical shape: they may be variously extended or flattened along one, two or even three axes. An international team of physicists, led by scientists from the Institute of Nuclear Physics of the Polish Academy of Sciences in Krakow (IFJ PAN) and the Heavy Ion Laboratory at the University of Warsaw (HIL), has recently presented the results of experiments showing that complex superdeformed nuclei occur in much lighter elements as well.

The majority of heavy atomic nuclei do not look at all like a perfect sphere, but are subtly flattened or extended. The prestigious journal Physical Review Letters has published results of experiments evidencing that highly explicit and complicated deformations, thus far observed solely in heavy nuclei, do appear in lighter elements such as calcium. The research was conducted by scientists of the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Krakow and the Heavy Ion Laboratory, University of Warsaw (HIL) along with broad international cooperation.

"Regarding that, we've known for several years that the nuclei can be slightly deformed even in light elements. Our experiments, however, have shown that in the case of calcium 42Ca they come to a particularly clear and complex deformation, called a triaxial superdeformation. Similar effects have been observed, but only in heavy elements, built from approximately 130-170 protons and neutrons," explains Prof. Adam Maj (IFJ PAN), who along with Prof. Faical Azaiez from the French Institut de Physique Nucleaire d'Orsay was one of the originators of the search.

Atomic nuclei contain from one proton to more than 200 protons and neutrons. Glued together by strong forces, which overcome powerful electrostatic repulsion between positively charged protons, the nuclei are structures shaped by very complex quantum phenomena. The dynamics of the processes occurring here is so fast that observing the atomic nucleus over a sufficiently long period of time (in the microworld, still only fractions of a second), we see the nucleus only as a statistically averaged shape. In some cases, it is simply that of a sphere.

Since the 1950s, however, researchers have observed nuclei which are elongated, sometimes significantly, such as an ellipsoid with one axis twice the length of the 2 others - such a case is known as nuclear superdeformation (relatively common nuclei are also found stretched at an axis ratio of 3:2). At this distortion it is possible to become more refined, as large deviations from the spherical shape occur not only along one, but even along three axes. The distorted nuclei, known as super-deformed triaxial, have so far been observed only in heavy elements.

Atomic nuclei have a size of several femtometers, or one quadrillionth of a meter. Direct observation of such small objects is, of course, impossible. Information about their structure relies more on indirect methods, by analyzing the gamma radiation emitted by the nucleus passing from states of higher energies to states of lower energies.

Depending on the structure of the nuclei and the method of their excitation, the nature of the resulting excited state may differ: the nucleus can vibrate in various ways as a whole, but can also, for instance, be activated to spin. The Polish physicists are especially interested the latter, spinning, states.

Currently, Coulomb excitation is the most reliable method to observe deformed nuclei, a process in which nuclei are excited as a result of collisions occurring exclusively through electromagnetic interactions. As a result, the theoretical description of the phenomenon can avoid accounting for the extremely complex strong interactions, and in practice the use of well-known tools of classical electrodynamics is sufficient.

Experiments on superdeformed light nuclei were based on very careful observation and detailed analysis of the gamma radiation emitted by the nucleus of calcium 42Ca, caused to spin as a result of a collision with a target constructed of lead 208Pb or gold 197Au (each 42Ca nucleus was striking the target nucleus with the kinetic energy of 170 MeV, or million electron volts).

The measurements were carried out at the Italian INFN Laboratori Nazionali di Legnaro (LNL), and they were used in the AGATA gamma radiation detector. This detector, the most advanced of the gamma-ray Germanium detectors currently in use, is the product of international cooperation and is characterized by an extremely high power of resolution. The experiment concerning superdeformation of the nuclei of calcium was the first one using this sophisticated device.

"While processing the data provided by AGATA, we used many methods and tools, such as the well-known GOSIA program for analysis of Columb excitation, which has been under development for several years at the Heavy Ion Laboratory in Warsaw. It turns out that the excited 42Ca nuclei are superdeformed and at the same time triaxial, which is confirmed by calculations using advanced theories of the structure of the atomic nucleus," says Dr. Katarzyna Hadynska-Klek (HIL), who led the analysis of the data.

Exciting 42Ca nuclei to the superdeformed triaxial state requires relatively low levels of energy (approx. 2 MeV), and because the superdeformed energy state is very near the basic spherical state, we can talk about a certain state of coexistence between the two states.

"A full analysis of the data collected in Legnaro took us three years. Along the way we had to conduct another, complementary experiment at the Warsaw cyclotron. Its results exclude one of the alternative variants of interpretation of the AGATA detector," says Dr. Pawel Napiorkowski, the project leader at HIL.

The discovery of triaxial superdeformation in 42Ca will help physicists to better understand the phenomena in atomic nuclei. Modern theoretical tools do not allow for accurate modeling of nuclei with an atomic number far exceeding 40, which has limited the development of research into superdeformation.

Meanwhile, in the case of calcium many theoretical obstacles disappear. It is also likely that the measurements and analysis will be used in the future to search for other superdeformed states at low excitation energy, including a longer life-span than the typical quadrillionths of a second.

Finding such states would allow scientists to turn our attention to the formation of what is known as inversion, a scenario in which the majority of nuclei are attained not in the ground state, but in the excited state. This would be a significant step towards building a nuclear laser capable of emitting coherent nuclear gamma radiation.

"Superdeformed and Triaxial States in 42Ca"; K. Hadynska-Klek, P. J. Napiorkowski, M. Zielinska, J. Srebrny, A. Maj, F. Azaiez et al.; Physical Review Letters 117, 062501 (2016); DOI: 10.1103/PhysRevLett.117.062501


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Short mid-infrared pulses offer new tool for peering inside atoms and solids
Washington DC (SPX) Oct 20, 2016
A newly developed laser pulse synthesizer that generates femtosecond pulses at mid-infrared (IR) wavelengths promises to provide scientists with a better view of the inner workings of atoms, molecules and solids. Understanding the behavior of electrons and other atomic elements at time scales shorter than one oscillation of a light wave could lead to a host of new developments, such as extremely ... read more


TIME AND SPACE
NASA Shakes Up Orion Test Article for the Journey to Mars

Beaches, skiing and tai chi: Club Med, Chinese style

NASA begins tests to qualify Orion parachutes for mission with crew

New Zealand government open-minded on space collaboration

TIME AND SPACE
Boosting Europe's all-electric satellites

Guiding Supply Ship to the International Space Station

The Pressure is On for SLS Hardware in Upcoming Test

First launch for Orbital's Antares rocket since '14 blast

TIME AND SPACE
Did it crash or land? Search on for Europe's Mars craft

Rover Conducting Science Investigations at 'Spirit Mount'

MAVEN mission observes ups and downs of water escape from Mars

A graveyard of broken dreams and landers

TIME AND SPACE
China to enhance space capabilities with launch of Shenzhou-11

Ambitious space satellite projects set for liftoff

China's permanent station plans ride on mission

China to enhance space capabilities with launch of Shenzhou-11

TIME AND SPACE
Airbus DS contracts with Intelsat General for European Defence Communications

Final exams prepare Thomas Pesquet for launch

Airbus DS in partnership with Orbital ATK to build EUTELSAT 5 West B

Third party satellite launch order bookings for Isro stands at $42 million

TIME AND SPACE
Pushing the boundaries of magnet design

The smart wheelchair

Using Photonics to Call Home

Researchers find way to tune thermal conductivity of 2-D materials

TIME AND SPACE
Oldest known planet-forming disk found

ALMA spots possible formation site of icy giant planet

Astronomers find oldest known planetary disk

Proxima Centauri might be more sunlike than we thought

TIME AND SPACE
Uranus may have two undiscovered moons

Possible Clouds on Pluto, Next Target is Reddish

Curious tilt of the Sun traced to undiscovered planet

Shedding light on Pluto's glaciers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.