. 24/7 Space News .
CHIP TECH
Ferrous chemistry in aqueous solution unravelled
by Staff Writers
Berlin, Germany (SPX) May 17, 2016


Combining the results from radiative and non-radiative relaxation processes enabled a complete picture of the filled and unfilled energy levels to be obtained. Image courtesy HZB/R. Golnak. For a larger version of this image please go here.

The team demonstrated how a detailed picture of the electronic states can be ascertained by systematically comparing all of the interactive electronic processes in a simple system of aqueous iron(II). The results have now been published in Scientific Reports, the open access journal from Nature Group publishing.

If a blindman feels the leg of an elephant, he can conclude something about the animal. And perhaps the conclusion would be that an elephant is constructed like a column. That is not incorrect, but not the whole story either. So it is with measurement techniques: they show a particular aspect very well, yet others not at all.

Now an HZB Institute of Methods for Material Development team headed by Professor Emad Aziz has succeeded in combining two different methods in such a way that a practically complete picture of the electronic states and interactions of a molecule in an aqueous solution results.

Simple model system
The hexaaqua(II) cation [Fe(H2O)6]2+ served as the model. It consists of a central iron atom with six water molecules arranged symmetrically about it and is well-understood. A group of theorists headed by Oliver Kuhn from the University of Rostock was able to calculate the electronic states and the possible excitations for this system in advance so that the predictions could be comprehensively tested against the empirical data.

"The primary soft X-ray emissions generated at BESSY II were perfectly suited for investigating the L-edge, as it is known", explains Ronny Golnak, who carried out the experiments during the course of his doctoral studies. The L-edge denotes the energy region where the important electronic states lie for transition metals like iron: from the electrons in the 1s and 2p shells near the nucleus to the valence electrons in the 3d shells.

Electrons from the 2p shells are briefly excited to higher states with the help of X-ray pulses. These excited states can decay via two different pathways: either by emitting light (radiative relaxation) that can be analysed with X-ray fluorescence spectroscopy (XRF), or instead by emitting electrons (non-radiative relaxation) that can be measured with photo-electron spectroscopy as a result of the Auger effect (AES).

Applying these methods of analysis to liquid samples or samples in solution has only become feasible the last few years thanks to development of microjet technology.

Combining the results
The interaction between the relaxation channels of excited 3d-valence orbitals in iron and its more strongly bound 3p and 3s orbitals has now been analysed for the hexaaqua complex. Combining the results from the radiative and non-radiative relaxation processes enabled a complete picture of the filled and unfilled energy levels to be obtained.

"Our results are important for interpreting X-ray spectra and improve our understanding of electron interactions between complexes in solution and the surrounding solvent for catalytic and functional materials", says HZB-scientist Bernd Winter.

Aziz adds: "Experts were skeptical about whether our experimental approach would work. We've now demonstrated it. Naturally, we will carry out this type of measurement on additional systems as well, particularly with catalysts that play a key role in the physical chemistry of energy materials, as well as in biological processes."

Publication in Scientific Reports 6, Article number: 24659 (2016) doi:10.1038/srep24659


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Helmholtz-Zentrum Berlin fur Materialien und Energie
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Primitive quantum computer finds application
Bristol, UK (SPX) May 12, 2016
Scientists and engineers from the Universities of Bristol and Western Australia have developed how to efficiently simulate a "quantum walk" on a new design for a primitive quantum computer. Quantum computers have significant potential to open entirely new directions for processing information and to overhaul the way that we think about and use the science of computation. Modern computers a ... read more


CHIP TECH
NASA research gives new insights into how the Moon got inked

First rocket made ready for launch at Vostochny spaceport

Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

CHIP TECH
The rise and fall of Martian lakes

Opportunity microscopic imaging camera back to normal operations

Second cycle of Martian seasons completing for Curiosity Rover

Flying observatory detects atomic oxygen in Martian atmosphere

CHIP TECH
Out of this world: 'Moon and Mars veggies' grow in Dutch greenhouse

NASA Invests in Next Stage of Visionary Technology Development

NASA makes dozens of patents available in public domain

Pentagon's research agency showcases future tech

CHIP TECH
Long March-7 rocket delivered to launch site

China's space technology extraordinary, impressive says Euro Space Center director

China can meet Chile's satellite needs: ambassador

China launches Kunpeng-1B sounding rocket

CHIP TECH
ISS completes 100,000th orbit of Earth: mission control

Canadian astronaut to join ISS in 2018

NASA, Space Station partners announce future mission crew members

New landing date for ESA astronaut Tim Peake

CHIP TECH
Pre-launch processing is underway with Indonesia's BRIsat for the next Arianespace heavy-lift flight

New Antares Rocket Rolls Out at NASA Wallops

First work platforms powered tested in VAB for Space Launch System

SpaceX's Dragon cargo ship splashes down in Pacific

CHIP TECH
Star Has Four Mini-Neptunes Orbiting in Lock Step

Exoplanets' Orbits Point to Planetary Migration

Synchronized planets reveal clues to planet formation

Kepler space telescope finds another 1284 exo planets

CHIP TECH
Scientists take a major leap toward a 'perfect' quantum metamaterial

UW team first to measure microscale granular crystal dynamics

Self-healing, flexible electronic material restores functions after many breaks

Digital "clone" testing aims to maximize machine efficiency









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.