Subscribe free to our newsletters via your
. 24/7 Space News .




EXO LIFE
Far-Out Photosynthesis
by Aaron Gronstal
Greenbelt MD (SPX) Mar 27, 2012


Flask containing culture of A. marina.

Everyone knows that we as humans literally owe the air we breathe to the greenery around us. As school children we learned that plants (as well as algae and cyanobacteria) perform the all important biological "magic trick" known as photosynthesis, which helps generate the atmospheric oxygen we use in every breath.

Plants, algae and cyanobacteria alter our planet in a way that only life can: they use photosynthesis to completely change the composition of the Earth's atmosphere. Since the days when dust devils on Mars were suspected to be the seasonal variation of vegetation, photosynthesis has been considered a key to identifying the presence of life on other planets.

Both atmospheric oxygen (in the presence of liquid water) and the reflectance spectrum of plant leaves produce signs of life - dubbed "biosignatures" - that can be seen from space. Therefore, photosynthetic biosignatures are a priority in the search for life on planets in distant solar systems. The big question is, will extrasolar photosynthesis use the same pigment as on Earth?

The process of photosynthesis is obviously more than simple magic. In basic terms, photosynthetic organisms take in CO2, water (H2O) and light energy to produce sugars (in other words, the food that makes plants a staple of our diet). During this process, photosynthetic organisms use a photopigment called chlorophyll a (Chl a) to split water molecules and produce oxygen.

Until recently, scientists thought Chl a was the only photopigment used in oxygenic photosynthesis. Chl a uses photons in visible light at wavelengths of 400-700 nm.

According to NASA postdoc Steve Mielke, lead author of a new study, "It was assumed that, due to the stringent energy requirements for splitting water molecules, longer wavelengths of light (which have lower energy) could not be used for oxygenic photosynthesis."

That assumption changed in 1996 when Hideaki Miyashita and colleagues discovered a cyanobacterium named Acaryochloris marina that uses chlorophyll d (Chl d) instead of Chl a to perform oxygenic photosynthesis with photons from visible light through to wavelengths up to 740 nm in the near-infrared (NIR).

This discovery raised many questions about the wavelengths of light required for photosynthesis. Scientists wondered how difficult it was for A. marina to power biochemical reactions with low energy photons.

It survives in environments where there is little visible light, because it gets the photons left over by Chl a organisms. However, could A. marina be regularly unsuccessful in using the longer wavelength photons, and could its ability to use NIR be inefficient, at the edge of what the molecular mechanisms of oxygenic photosynthesis are able to handle? Or could these unique organisms actually thrive on low-energy photons?

New research has shown that A. marina doesn't struggle at all when living on low-energy photons. In fact, the cyanobacteria is just as efficient or more so in storing energy as organisms that rely on Chl a for photosynthesis.

Mielke and collaborators used a technique called pulsed time-resolved photo-acoustics (PTRPA) to compare the photosynthetic abilities of A. marina to a Chl a cyanobacterium named Synechococcus leopoliensis. PTRPA involves laser pulses at controlled wavelengths and allowed the team to measure the efficiency of photon energy storage (energy stored vs. energy input) of cyanobacterial cells.

When testing Chl d and Chl a at the wavelengths they each need to split water molecules, the team showed that whole-cell energy storage in A. marina was just as - and sometimes more - efficient than the S. leopoliensis cells using Chl a. For the first time, the team showed that oxygenic photosynthesis can operate well at longer wavelengths! Plot of incident spectral radiation and whole cell in vivo absorbance.

Plot of incident spectral radiation and whole cell in vivo absorbance. The yellow curve is the solar irradiance of the Sun at Earth's surface (Lean and Rind, 1998); brown is the irradiance of Gliese 581 (an M star) at habitable zone distance; red is the normalized absorbance of A. marina (D. Mauzerall); black is the normalized absorbance of Synechococcus (D. Mauzerall); and purple is the incident irradiance (%) in an A. marina environment (Larkum and Kuhl, 2005). + View larger image

This discovery makes A. marina and Chl d very interesting for scientists that are trying to find life on extrasolar planets that orbit stars beyond our solar system.

Nancy Kiang of the NASA Goddard Institute for Space Studies (GISS) explains, "Chl d extends the useful solar radiation for oxygenic photosynthesis by 18% - meaning life can use more wavelengths of light (i.e. more types of light-producing stars) to survive. This implies a lot of cool things."

Kiang emphasizes the implications that the findings could have in the search for life on extrasolar planets - and the future of life here on Earth:

1) "Planets orbiting red dwarf stars may not get much visible light, but they'll get a lot of NIR light. So, now we know it would still make sense to look for oxygenic photosynthesis on such planets, and we could look for pigment signatures in the NIR."

2) "A. marina appears to be a late evolution, occupying a light niche that is produced by leftover photons from Chl a organisms. Since it can use more solar radiation than Chl a organisms, might our planet evolve to have Chl d outcompete Chl a?"

3) "Biomimicry of photosynthesis continues to be a quest in the development of renewable energy, but no one has yet developed an artificial system as good as Nature to split water. For renewable energy that depends on sunlight, do the lower energy photons used with Chl d mean that we don't need such strong artificial catalysts for producing hydrogen fuel and biofuels?"

The findings could completely change our understanding of a biological reaction that is essential to the modern biosphere of Earth. They may also open new doors for the future of humankind in areas like renewable energy. But for NASA, the study could also have implications for the future of life on Earth - and beyond - that are truly far out.

This work was conducted by NASA Postdoctoral Program fellow Steven P. Mielke, under the advisement of Nancy Y. Kiang at GISS, in the laboratory of David Mauzerall at Rockefeller University in New York City, and in collaboration with Robert Blankenship at Washington University in St. Louis, MO, and Marilyn Gunner at City College of New York. Reference: Mielke, S.P., N.Y. Kiang, R.E. Blankenship, M.R. Gunner, and D. Mauzerall, 2011: Efficiency of photosynthesis in a Chl d-utilizing cyanobacterium is comparable to or higher than that in Chl a-utilizing oxygenic species. Biochim. Biophys. Acta Bioenerg., 1807, 1231-1236, doi:10.1016/j.bbabio.2011.06.007.

.


Related Links
-
Life Beyond Earth
Lands Beyond Beyond - extra solar planets - news and science






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EXO LIFE
Super-Earth unlikely able to transfer life to other planets
West Lafayette IN (SPX) Mar 23, 2012
While scientists believe conditions suitable for life might exist on the so-called "super-Earth" in the Gliese 581 system, it's unlikely to be transferred to other planets within that solar system. "One of the big scientific questions is how did life get started and how did it spread through the universe," said Jay Melosh, distinguished professor of earth and atmospheric sciences. "T ... read more


EXO LIFE
NASA's Grail MoonKam Returns First Student-Selected Lunar Images

Ecliptic "MoonKAM" Systems Begin Operations in Lunar Orbit

Two New NASA LRO Videos: See Moon's Evolution, Take a Tour

China to get lunar soil

EXO LIFE
A glow in the Martian night throws light on atmospheric circulation

Mars Science Laboratory Adjusts Orbital Path And Tests Instruments

Geologists discover new class of landform - on Mars

Red Food For the Red Planet

EXO LIFE
Not your average heat shield

NASA Seeks Space Launch System Advanced Development Solutions

Patent requests in Europe reach record in 2011

SciTechTalk: Can long space missions work?

EXO LIFE
China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

EXO LIFE
ESA Cargo Ship Carries Research and Technology Investigations to ISS

Japan Shares ISS SMILES via Atmospheric Data Distribution

ATV Edoardo Amaldi set for liftoff

Astrium: double delivery for ATV-3 Edoardo Amaldi launch

EXO LIFE
ILS Proton Launches Intelsat 22

US ramping up private sector's role in spaceflight

Europe's smart supply ship on its way to Space Station

Third Ariane 5 ready for launch in 2012

EXO LIFE
Runaway Planets Zoom at a Fraction of Light-Speed

Some orbits more popular than others in solar systems

Herschel's new view on giant planet formation

Kepler Statistical Analysis Suggests Earthlike Planets Extremely Rare

EXO LIFE
Russia to Focus on Its Orbital Cluster - Popovkin

Materials inspired by Mother Nature: A 1-pound boat that could float 1,000 pounds

Soviet Weather Satellite to Fall to Earth

Boeing Receives Phased Array Antenna System Contract from Yahsat




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement