Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Famous Supernova Reveals Clues About Crucial Cosmic Distance Markers
by Staff Writers
Huntsville AL (SPX) Mar 21, 2013


Kepler's supernova remnant (X-ray: NASA/CXC/NCSU/M.Burkey et al; Infrared: NASA/JPL-Caltech).

A new study using data from NASA's Chandra X-ray Observatory points to the origin of a famous supernova. This supernova, discovered in 1604 by Johannes Kepler, belongs to an important class of objects that are used to measure the rate of expansion of the universe.

Astronomers have used a very long Chandra observation of the remnant of Kepler's supernova to deduce that the supernova was triggered by an interaction between a white dwarf and a red giant star. This is significant because another study has already shown that a so-called Type Ia supernova caused the Kepler supernova remnant.

The thermonuclear explosion of a white dwarf star produces such supernovas. Because they explode with nearly uniform brightness, astronomers have used them as cosmic distance markers to track the accelerated expansion of the universe.

However, there is an ongoing controversy about Type Ia supernovas. Are they caused by a white dwarf pulling so much material from a companion star that it becomes unstable and explodes? Or do they result from the merger of two white dwarfs?

"While we can't speak to all Type Ia supernovas, our evidence points to Kepler being caused by a white dwarf pulling material from a companion star, and not the merger of two white dwarfs," said the first author of the new Chandra study, Mary Burkey of North Carolina State University (NCSU). "To continue improving distance measurements with these supernovas, it is crucial to understand how they are triggered."

The Kepler supernova remnant is one of only a few Type Ia supernovas known to have exploded in the Milky Way galaxy. Its proximity and its identifiable explosion date make it an excellent object to study.

"Johannes Kepler made such good naked-eye observations in 1604 that we can identify the supernova as Type Ia," said co-author Stephen Reynolds, also of NCSU. "He would be thrilled that we can use today's terrific instruments to reveal the hidden secrets of his supernova."

The new Chandra images reveal a disk-shaped structure near the center of the remnant. The researchers interpret this X-ray emission to be caused by the collision between supernova debris and disk-shaped material that the giant star expelled before the explosion. Another possibility is that the structure is just debris from the explosion.

The evidence that this disk-shaped structure was left behind by the giant star is two-fold: first, a substantial amount of magnesium - an element not produced in great amounts in Type Ia supernovas - was found in the Kepler remnant. This suggests the magnesium came from the giant companion star.

Secondly, the disk structure seen by Chandra in X-rays bears a remarkable resemblance in both shape and location to one observed by the Spitzer Space Telescope. These infrared-emitting disks are thought to be dusty bands expelled by stars in a wind, rather than material ejected in a supernova.

The researchers found a remarkably large and puzzling concentration of iron on one side of the center of the remnant but not the other. The authors speculate that the cause of this asymmetry might be the "shadow" in iron that was cast by the companion star, which blocked the ejection of material. Previously, theoretical work has suggested this shadowing is possible for Type Ia supernova remnants.

"One remaining challenge is to find the damaged and fast-moving leftovers of the giant star that was pummeled by the explosion at close quarters," said co-author Kazimierz Borkowski, also of NCSU.

Much of the evidence in the last several years has favored the white dwarf merger scenario for Type Ia supernovas within the Milky Way as well as those found in other galaxies. This result strengthens the case that Type Ia supernovas may have more than one triggering mechanism.

These results could imply that many Type Ia supernovas have a similar origin, but the authors warn that they are unsure whether Kepler was a typical explosion. For example, a recent analysis based on Chandra data and computer simulations, led by Daniel Patnaude from Harvard-Smithsonian Center for Astrophysics, has suggested that Kepler was an unusually powerful explosion.

"We could settle the issue of how normal - or abnormal - the Kepler supernova was if we could discover some light from the supernova explosion that just happened to bounce off some interstellar dust to take a few hundred extra years to get here: a light echo," said Reynolds. Such light echoes have been found for two other galactic supernovas in the last millennium.

.


Related Links
Chandra X-Ray Observatory
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Herschel Discovers Some of the Youngest Stars Ever Seen
Washington DC (SPX) Mar 21, 2013
Astronomers have found some of the youngest stars ever seen thanks to the Herschel space observatory, a European Space Agency mission with important NASA contributions. Observations from NASA's Spitzer Space Telescope and the Atacama Pathfinder Experiment (APEX) telescope in Chile, a collaboration involving the Max Planck Institute for Radio Astronomy in Germany, the Onsala Space Observato ... read more


STELLAR CHEMISTRY
NASA's LRO Sees GRAIL's Explosive Farewell

Amazon's Bezos recovers Apollo 11 engines

Leaping Lunar Dust

Lunar Orbiter Image Recovery Project Seeks Public Support To Retrieve Apollo Era Moon Images

STELLAR CHEMISTRY
Sun in the Way Will Affect Mars Missions in April

ChemCam data abundant at Planetary Conference

Los Alamos science sleuth on the trail of a Martian mystery

Curiosity Rover Exits 'Safe Mode'

STELLAR CHEMISTRY
NASA Voyager Status Update on Voyager 1 Location

Voyager 1 has entered a new region of space

NASA denies report that Voyager left solar system

Reproduction In Zero Gravity

STELLAR CHEMISTRY
Shenzhou 10 - Next Stop: Jiuquan

China's fourth space launch center to be in use in two years

China to launch new manned spacecraft

Woman expected again to join next China crew roster

STELLAR CHEMISTRY
New Space Station Crew Members to Launch and Dock the Same Day

ESA seeks innovators for orbiting laboratory

New ISS crew prepares for launch

Space crew returns to Earth from ISS

STELLAR CHEMISTRY
Sea Launch and EchoStar Reach Preliminary Agreement for Launch Services

Estonia's student cubesat satellite is ready for the next Vega launch

Vega receives its upper stage as the next mission's two primary passengers land in French Guiana

Grasshopper Successfully Completes 80M Hover Slam

STELLAR CHEMISTRY
Astronomers Detect Water in Atmosphere of Distant Planet

Distant planetary system is a super-sized solar system

Water signature in distant planet shows clues to its formation

The Great Exoplanet Debate

STELLAR CHEMISTRY
Smartphone app turns home drone into spacecraft

Scientists claim new glasses-free 3D for cellphone

NASA Awards Astrotech Contract For SMAP Spacecraft Processing

Videogame power harnessed for positive goals




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement