Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















EARTH OBSERVATION
Fairy circles discovered in Australia by researchers
by Staff Writers
Beer-Sheva, Israel (SPX) Mar 29, 2016


According to a new study in the PNAS journal (Proceedings of the National Academy of Sciences), the research team found new evidence that these barren circular patches of land - previously thought to exist only in the dry Namibia grassland of southern Africa - occur due to the way plants organize themselves in response to water shortage. Image courtesy Dr. Hezi Yizhaq, Ben-Gurion University of the Negev. For a larger version of this image please go here.

Researchers at Ben-Gurion University of the Negev (BGU) and Helmholtz Centre for Environmental Research (UFZ) in Leipzig, Germany are unraveling the mystery behind what causes "fairy circles." Recently discovered in the uninhabited Australian outback, fairy circles were thought to exist only in Africa.

According to a new study in the PNAS journal (Proceedings of the National Academy of Sciences), the research team found new evidence that these barren circular patches of land - previously thought to exist only in the dry Namibia grassland of southern Africa - occur due to the way plants organize themselves in response to water shortage.

Up to now, scientists offered several theories to explain the honeycomb-like pattern formed by these circles, which have long been considered one of nature's greatest mysteries. Some believed termites or ants nibble away at the roots of the grasses and kill them. Others suspected toxic carbon monoxide gas may rise from the earth under the circles and kill the vegetation.

But the discoveries documented in the March, 2016 study corroborate a third, self-organization theory, which shows the amount of water available at the transition between desert and grassland is not enough for continuous vegetation cover. As a result, individual plants compete for precious water and organize themselves in this highly irregular characteristic grass carpet with large holes that provide water to the surrounding vegetation.

The reported study consists of an empirical component, led by Dr. Stephan Getzin of UFZ in collaboration with Dr. Hezi Yizhaq and Prof. Itzhak Katra from BGU, and a theoretical part, led by Prof. Ehud Meron of BGU in collaboration with Dr. Hezi Yizhaq and Ph.D. students Yuval R. Zelnik and Omer Tzuk.

The researchers combined fieldwork, remote sensing, spatial pattern analysis, mathematical modeling, and model analysis to demonstrate that the observed fairy circle patterns are self-organizing and are driven by positive biomass-water feedbacks that take place simultaneously throughout the whole system, and are not related to termite activity.

"Using model simulations we were able to show that the Australian fairy circle gap patterns share similar characteristics with model-produced patterns," Prof. Meron explains. "Furthermore, we showed that the formation of the patterns is driven by a positive feedback between vegetation growth and water transport toward the growth location, very much like in the Namibian ecosystem, as we found in an earlier study (Y. Zelnik, E. Meron, G. Bel, PNAS 2015).

"However, the two ecosystems differ in the water transport mechanism: below-ground soil-water diffusion in Namibia and above-ground water flow in Australia. The appearance of similar vegetation patterns in distinct ecosystems that exhibit different pattern-formation mechanisms is a manifestation of a central universality principle of pattern-formation theory, and provides further support for the applicability of this theory to water-limited ecosystems."

UFZ researcher Dr. Stephan Getzin, an early supporter of the termite hypothesis who changed his view following the recent advance in understanding vegetation patchiness as a self-organization phenomenon, has conducted extensive aerial-view studies of fairy circle landscapes.

"The interesting thing about fairy circles is they are spread with great regularity and homogeneity, even over vast areas, but they occur only within a narrow rainfall belt," Getzin explains.

"This is consistent with model predictions that gap (fairy circle) patterns should appear in a limited precipitation range; above this range uniform vegetation prevails and below that range morphological changes to stripe and spot patterns take place," adds Meron.

To investigate the phenomenon more closely, Getzin went to Australia with his BGU counterpart, Hezi Yizhaq. The scientists measured the barren circles, compared their surface temperatures with those of vegetated areas, and charted indications of ants and termites in four parts of the almost uninhabited region. They also observed how the water drained away in these areas and took soil samples that were later analyzed in a BGU lab by Prof. Itzhak Katra.

Analyzing this data, the researchers concluded that the barren patches in Australia are not produced by animal activities. "In Australia, in the majority of cases, we found no nests in the circles. Unlike in Namibia, cryptic sand termites do not exist in Australia," Getzin says. "And the ones we did find have a completely different distribution pattern to the fairy circles."

Fairy circles, as observed in Namibia and now in Australia, are fascinating and intriguing pattern-formation phenomena. Unlike equally fascinating patterns in inanimate systems, however, self-organizing patterns in ecology may also have important implications for ecosystem function, especially in highly variable environments as we witness today.

A recent book by Prof. Meron, Nonlinear Physics of Ecosystems (CRC Press 2015), elaborates on these questions using the powerful concepts and mathematical tools of pattern formation theory. Among the questions addressed are how pattern formation affects desertification transitions, interspecific interactions and biodiversity, and the restoration of degraded landscapes.

.


Related Links
American Associates, Ben-Gurion University of the Negev
Earth Observation News - Suppiliers, Technology and Application






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARTH OBSERVATION
NASA Gets Down to Earth with Globe-Spanning Campaigns
Pasadena CA (JPL) Mar 25, 2016
NASA is sending scientists around the world in 2016 - from the edge of the Greenland ice sheet to the coral reefs of the South Pacific - to delve into challenging questions about how our planet is changing and what impacts humans are having on it. While Earth science field experiments are nothing new for NASA, the next six months will be a particularly active period with eight major new ca ... read more


EARTH OBSERVATION
Permanent Lunar Colony Possible in 10 Years

China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

EARTH OBSERVATION
New Gravity Map Gives Best View Yet Inside Mars

ExoMars probe imaged en route to Mars

How the ExoMars mission could sniff out life on Mars

ExoMars on its way to solve the Red Planet's mysteries

EARTH OBSERVATION
British bacon sandwich en route to ISS tastes out of this world

China regulator frowns on Anbang's hotel bids: report

Broomstick flying or red-light ping-pong? Gadgets at German fair

Jacobs Joins Coalition for Deep Space Exploration

EARTH OBSERVATION
China's 1st space lab Tiangong-1 ends data service

China's aim to explore Mars

China to establish first commercial rocket launch company

China's ambition after space station

EARTH OBSERVATION
Cygnus Set to Deliver Its Largest Load of Station Science, Cargo

Three new members join crew of International Space Station

Grandpa astronaut to break Scott Kelly's space record

Three new crew, including US grandpa, join space station

EARTH OBSERVATION
MHI signs H-IIA launch deal for UAE Mars mission

Launch of Dragon Spacecraft to ISS Postponed Until April

ILS and INMARSAT Agree To Future Proton Launch

Soyuz 2-1B Carrier Rocket Launched From Baikonur

EARTH OBSERVATION
Most eccentric planet ever known flashes astronomers with reflected light

VLA shows earliest stages of planet formation

VLA observes earliest stages of planet formation

NASA's K2 mission: Kepler second chance to shine

EARTH OBSERVATION
A new model for how twisted bundles take shape

Local fingerprint of hydrogen bonding captured in experiments

Lehigh scientists extend the reach of single crystals

A new-structure magnetic memory device developed




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.