24/7 Space News  





. Factors That Control Ion Motion in Solid Electrolytes Uncovered

Deassy Novita is a third-year graduate student working in the lab of Punit Boolchand.
by Staff Writers
Cincinnati OH (SPX) May 09, 2007
University of Cincinnati researchers show for the first time that they can connect an increase in electrical (ionic) conductivity with flexibility of their networks. The same team of researchers discovered intermediate phases seven years ago in amorphous or disordered materials where networks are covalently bonded.

The team's results are presented in "Fast-ion conduction and flexibility of glassy networks," to be published this spring in Physical Review Letters.

"We find that when networks become flexible their electrical conductivity increases precipitously," says Deassy Novita. "Now we will be able to chemically tune these materials for specific applications. For example, the batteries implanted in patients who have heart pacemakers make use of a solid electrolyte."

Novita is a third-year graduate student working in the lab of Punit Boolchand, professor of electrical engineering in the University of Cincinnati's College of Engineering. Originally from Indonesia and now a U.S. citizen, Novita began the ground-breaking research as part of her doctoral thesis.

"This system has been studied by about 35 groups all over the world over the past two decades. We are the first to make these samples in a 'dry' state," says Boolchand. "Most people who studied these materials produced them unwittingly in the laboratory ambient environment where the relative humidity is typically 50%, and that leads to samples that are - so to speak - in a 'wet' state. By special handling of the materials, we were able to produce them in a dry state, where we can see the intrinsic behavior of these materials."

"The intrinsic behavior shows samples to exist in three elastic domains," Boolchand explains. "In the first domain, at low AgI (silver iodide) content (less than 9.5%) they form networks that are rigid but stressed. In the second domain, called the "intermediate phase," at a slightly higher content of AgI (9.5 to 37.8%), they form networks that are rigid but unstressed. And finally in the third domain, at AgI content of 37.8% and higher, their networks become flexible."

The UC research team showed for the first time that such intermediate phases also exist in networks that are ionically conducting. In the flexible phase of these materials, "silver ions move like fish through water," Boolchand says.

The next step in their research will be to understand why traces of water change the behavior of these electrolytes so drastically and to understand if the behavior observed here of three elastic domains is a general feature of all electrolyte glasses or is it peculiar to this very well studied material.

"We think the behavior will be observed in general in solid electrolytes," says Boolchand.

Email This Article

Related Links
University of Cincinnati
Understanding Time and Space




Tempur-Pedic Mattress Comparison

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


hello world
The Physics Of Utensils
College Park MD (SPX) May 07, 2007
More details on Bloomfield's article
American Institute of Physics
Whether you're cooking dinner or eating it, the knives, spoons, and forks you're using are probably made of steel. It's easy to take those utensils for granted, except when they bend, chip, corrode, or lose their sharpness. But how does good cutlery differ from bad, and what compromises are involved in making practical utensils? In this Quick Study, we'll take a look at the science of steel.

.
Get Our Free Newsletters Via Email
  



  • Heidelberg Soldiers Taste Test Two New MREs
  • Subcommittee Examines Key Challenges Confronting NASA Space Science Program
  • New Breed of Architects Specializes In Off-Planet Living
  • Star Trek Star Scotty Rockets Into Space In Final Journey

  • Opportunity Conducts Path Planning Test And Gets Another Energy Boost
  • Mars Rover Spirit Finds Evidence Of Ancient Volcanic Explosion
  • COROT Discovers Its First Exoplanet And Catches Scientists By Surprise
  • Opportunity Gets A Boost Of Energy And Continues Imaging

  • Ariane 5 Achieves Record Performance With Geostationary Transfer Orbit
  • Ariane 5 Launches Twin GEO Birds
  • Lockheed Martin-Built Astra 1L Satellite Ready For Launch
  • Arianespace And Japan Continue To Build Long-Term Relationship

  • Volcanic Eruptions In Kamchatka
  • NASA Satellite Captures Image Of Georgia Wildfires
  • US Earth-Observing Satellites In Jeopardy
  • Exploring Caves From 30 Feet In The Air

  • Rosetta And New Horizons Watch Jupiter In Joint Campaign
  • New Horizons Shows Off Its Color Camera In Io Image
  • Alice Views Jupiter And Io
  • A Look From LEISA

  • The Brightest Supernova Ever
  • New VERITAS Telescope Array May Help Find Dark Matter
  • Hubble Sees Multiple Star Generations In A Globular Cluster
  • Spitzer Spies Jet-Setting Stars

  • US Rejected Russian Request For Joint Moon Program
  • Longest Holiday In Space Ends As Russia Touts Lunar Tour Within Five Years
  • Back To The Moon For Some Reconnaissance
  • Rochester Triumphs In NASA Great Moonbuggy Race

  • Germany Confident EU Will Take Over Galileo Project
  • GIOVE-A Transmits First Navigation Message
  • EU To Consider Taking Over Galileo Satellite System
  • GLONASS Potential Still To Be Realised

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement