Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




TIME AND SPACE
Extraordinary momentum and spin discovered in evanescent light waves
by Staff Writers
Tokyo, Japan (SPX) Mar 13, 2014


Transverse force and torque on a particle in evanescent field generated from a total internal reflection in a glass prism. These reveal the presence of the transverse momentum and spin in the evanescent wave above the prism. Image courtesy RIKEN.

A team of researchers from the RIKEN Center for Emergent Matter Science (CEMS) in Japan has identified unexpected dynamic properties of a type of light wave called evanescent waves. These surprising findings contrast sharply with previous knowledge about light and photons.

The study carried out in the Quantum Condensed Matter Research Group (CEMS, RIKEN, Japan) led by Dr. Franco Nori is published in the journal Nature Communications.

Energy, momentum, and angular momentum are the main dynamic characteristics of physical objects. It is well known that light propagating as an electromagnetic wave or photon carries momentum along the direction of the wave's propagation, and that this momentum is independent of polarization. In addition, light can carry an intrinsic angular momentum, called spin, that is proportional to the degree of circular polarization (helicity), and aligned with the propagation direction.

The RIKEN team analysed the momentum and spin of evanescent electromagnetic waves - a type of light waves that travel close to the surface of material objects and whose intensity decreases exponentially, rather than varying sinusoidally, from the interface where they were formed.

Surprisingly, the researchers found that evanescent waves carry momentum and spin components that are orthogonal to the direction of wave propagation. Moreover, the transverse spin turns out to be independent of polarization and helicity, while the transverse momentum is proportional to the wave helicity.

"Such extraordinary properties, revealed in very basic objects, offer a unique opportunity to investigate and observe fundamental physical features, which were previously hidden in usual propagating light and were considered impossible," says Dr. Konstantin Bliokh, first author of the study. "In addition to a detailed theoretical analysis, we propose and simulate numerically four novel experiments for the detection of the unusual momentum and spin properties of evanescent waves via their interaction with small probe particles," he adds.

These results add a new chapter to the physics of momentum and spin of classical and quantum fields, and predict a number of novel light-matter interaction effects involving evanescent waves.

Extraordinary momentum and spin in evanescent waves; Konstantin Y. Bliokh, Aleksandr Y. Bekshaev, Franco Nori; Nature Communications, 2014 DOI: 10.1038/ncomms4300

.


Related Links
RIKEN
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
Crystals ripple in response to light
San Diego CA (SPX) Mar 13, 2014
Light can trigger coordinated, wavelike motions of atoms in atom-thin layers of crystal, scientists have shown. The waves, called phonon polaritons, are far shorter than light waves and can be "tuned" to particular frequencies and amplitudes by varying the number of layers of crystal, they report in the early online edition of Science March 7. These properties - observed in this class of m ... read more


TIME AND SPACE
Spacesuits And Moon Notes Among The Stars At Bonhams NYC Auction

Russia to launch three lunar rovers from 2016 to 2019

Control circuit malfunction troubles China's Yutu

China's Lunar Lander Still Operational

TIME AND SPACE
NASA Orbiter Safe After Unplanned Computer Swap

Concerns and Considerations with the Naming of Mars Craters

Lava floods the ancient plains of Mars

Mars name-a-crater scheme runs into trouble

TIME AND SPACE
American, two Russians back on Earth after half-year in space

First space tourists to fly around Mars and Venus in 2021

Under shadow of spy scandal, Merkel, Cameron head to tech fair

Mini Rocket Models to be Used in a Big Way for SLS Base Heating Test

TIME AND SPACE
"Space Odyssey": China's aspiration in future space exploration

China to launch first "space shuttle bus" this year

China expects to launch cargo ship into space around 2016

China capable of exploring Mars

TIME AND SPACE
Japanese astronaut becomes ISS commander

Station Crew Preps for Return to Earth, Repairs Recycling System

NASA says US-Russia space ties 'normal'

Cancer Targeted Treatments from Space Station Discoveries

TIME AND SPACE
Launcher assembly begins for Ariane 5 Flight VA218

ILS And ISS Reshetnev Announce Proton Dual Launch Agreement

Arianespace in spotlight at Satellite 2014: expects another record-breaking year

United Rocket and Space Corporation registered in Russia

TIME AND SPACE
UK joins the planet hunt with Europe's PLATO mission

X-ray laser FLASH spies deep into giant gas planets

Crashing Comets Explain Surprise Gas Clump Around Young Star

Every red dwarf star has at least one planet

TIME AND SPACE
Ultra sensitive detection of radio waves with lasers

Squeezing light into metals

Build me a face in 3D: British man's life 'transformed'

Microsoft hopes 'Titanfall' can boost Xbox One




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.