. 24/7 Space News .
IRON AND ICE
Exposed ice on Rosetta's comet confirmed as water
by Staff Writers
Paris (ESA) Jan 15, 2016


Two exposures of water ice identified by Rosetta's VIRTIS instrument in the Imhotep region of Comet 67P/Churyumov-Gerasimenko in September-November 2014. The main image was taken on 17 September 2014 from a distance of about 28.8 km from the comet centre. The two insets show oblique views of the two icy exposures. The left hand image was taken on 20 September 2014 from a distance of 27.9 km. The right hand image was taken on 15 September 2014 from a distance of 29.9 km. The image contrasts have been enhanced to better reveal the icy regions. The approximate scale for each image is indicated. Image courtesy ESA/Rosetta/NavCam - CC BY-SA IGO 3.0. For a larger version of this image please go here.

Observations made shortly after Rosetta's arrival at its target comet in 2014 have provided definitive confirmation of the presence of water ice.

Although water vapour is the main gas seen flowing from comet 67P/Churyumov-Gerasimenko, the great majority of ice is believed to come from under the comet's crust, and very few examples of exposed water ice have been found on the surface.

However, a detailed analysis by Rosetta's VIRTIS infrared instrument reveals the composition of the comet's topmost layer: it is primarily coated in a dark, dry and organic-rich material but with a small amount of water ice mixed in.

In the latest study, which focuses on scans between September and November 2014, the team confirms that two areas several tens of metres across in the Imhotep region that appear as bright patches in visible light, do indeed include a significant amount of water ice.

The ice is associated with cliff walls and debris falls, and was at an average temperature of about -120+ C at the time.

In those regions, pure water ice was found to occupy around 5% of each pixel sampling area, with the rest made up of the dark, dry material. The abundance of ice was calculated by comparing Rosetta's VIRTIS infrared measurements to models that consider how ice grains of different sizes might be mixed together in one pixel.

The data reveal two different populations of grains: one is several tens of micrometres in diameter, while the other is larger, around 2 mm.

These sizes contrast with the very small grains, just a few micrometres in diameter, found in the Hapi region on the 'neck' of the comet, as observed by VIRTIS in a different study.

"The various populations of icy grains on the surface of the comet imply different formation mechanisms, and different time scales for their formation," says Gianrico Filacchione, lead author of the new study, published in the journal Nature.

At Hapi, the very small grains are associated with a thin layer of 'frost' that forms as part of the daily ice cycle, a result of fast condensation in this region over each comet rotation of just over 12 hours.

"By contrast, we think that layers of the larger millimetre-sized grains we see in Imhotep have a more complex history. They likely formed slowly over time, and are only occasionally exposed through erosion," says Gianrico.

Assuming a typical grain size of tens of micrometres for ice grains on the surface, as inferred on other comets as well as Rosetta's comet, then observations of millimetre-sized grains can be explained by the growth of secondary ice crystals.

One way this can occur is via 'sintering', whereby ice grains are compacted together. Another method is 'sublimation', in which heat from the Sun penetrates the surface, triggering the evaporation of buried ice. While some of the resulting water vapour may escape from the nucleus, a significant fraction of it recondenses in layers beneath the surface.

This idea is supported by laboratory experiments that simulate the sublimation behaviour of ice buried under dust, heated from above by sunlight.

These tests show that more than 80% of the released water vapour does not make it up through the dust mantle, but rather is redeposited below the surface.

Additional energy for sublimation could also be provided by a transformation in structure of the ice at a molecular level. At the low temperatures observed on comets, amorphous ice can change into crystalline ice, releasing energy as it does so.

"Ice grain growth can lead to ice-rich subsurface layers several metres thick, that can then affect the large-scale structure, porosity and thermal properties of the nucleus," says Fabrizio Capaccioni, VIRTIS principal investigator.

"The thin ice-rich layers that we see exposed close to the surface may be a consequence of cometary activity and evolution, implying that global layering did not necessarily occur early in the comet's formation history."

"Understanding which features on the comet are left over from its formation and which have been created during its evolution is somewhat challenging, but this is why we are studying a comet up close: to try to discover what processes are important at different stages of a comet's lifetime," adds Matt Taylor, ESA's Rosetta project scientist.

The Rosetta scientists are now analysing data captured later in the mission, as the comet moved closer to the Sun in mid-2015, to see how the amount of ice exposed on the surface evolved as the heating increased.

"Exposed water ice on the nucleus of comet 67P/Churyumov-Gerasimenko," by G. Filacchione et al is published in the journal Nature.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Rosetta at ESA
Asteroid and Comet Mission News, Science and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
IRON AND ICE
Exposed ice on Rosetta's comet confirmed as water
Paris (ESA) Jan 14, 2016
Observations made shortly after Rosetta's arrival at its target comet in 2014 have provided definitive confirmation of the presence of water ice. Although water vapour is the main gas seen flowing from comet 67P/Churyumov-Gerasimenko, the great majority of ice is believed to come from under the comet's crust, and very few examples of exposed water ice have been found on the surface. Howeve ... read more


IRON AND ICE
Lunar mission moves a step closer

Momentum builds for creation of 'moon villages'

Chang'e-3 landing site named "Guang Han Gong"

South Korea to launch lunar exploration in 2016, land by 2020

IRON AND ICE
A Starburst Spider On Mars

Opportunity Welcomes Winter Solstice

Rover Rounds Martian Dune to Get to the Other Side

Boulders on a Martian Landslide

IRON AND ICE
SAIC Awarded $485 Million Enterprise Applications Service Technologies 2 Contract by NASA

Strengthening Our Space Technology Future: Snapshots of Success

Six Orion Milestones to Track in 2016

Gadgets get smarter, friendlier at CES show

IRON AND ICE
Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

China Plans More Than 20 Space Launches in 2016

China plans 20 launches in 2016

China's Belt and Road Initiative catches world's imagination: Inmarsat CEO

IRON AND ICE
Long haul, night repairs for British, US spacewalkers

ISS Science Rockets Into 2016

British astronaut's first spacewalk set for Jan 15

NASA Delivers New Video Experience On ISS

IRON AND ICE
SpaceX will attempt ocean landing of rocket Jan 17

Arianespace year-opening mission delivered to Final Assembly Building

SpaceX will try to land its reusable rocket on an ocean dock

Maintaining Arianespace's launch services leadership in 2016

IRON AND ICE
Lab discovery gives glimpse of conditions found on other planets

Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

Monster planet is 'dancing with the stars'

IRON AND ICE
Space Protection - A Financial Primer

Russia Building a Powerful New Early Warning Radar Network

Self-adaptive material heals itself, stays tough

Vietnam army probes mysterious 'space balls'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.