Subscribe free to our newsletters via your
. 24/7 Space News .

Subscribe free to our newsletters via your

Exploiting high speed light for super slow science
by Staff Writers
London, UK (SPX) Feb 17, 2016

Dr Claire Corkhill, Sheffield, investigating the hydration of cements used by the nuclear industry for the storage of waste. Image courtesy Sean Dillow. Diamond Light Source. For a larger version of this image please go here.

Scientists at the world's premier science conference - the American Association for the Advancement of Science (AAAS) annual meeting - will this year be discussing the advances enabled by the UK's pioneering Long-Duration Experiment facility (LDE). Unmatched anywhere in the world, the LDE allows scientists to closely study the atomic and molecular behaviour of matter under different conditions and over a period of two years.

Based at the UK's synchrotron science facility, Diamond Light Source, the LDE exploits powerful synchrotron light - which is 10 billion times brighter than the sun - to penetrate to the heart of matter. But unlike Diamond's 25 other experimental stations, the LDE allows scientists to study the behaviour of material as it changes over an extended period of time, meaning that experiments can last not hours or days, but months or years.

Prof Trevor Rayment, Diamond's Director of Physical Sciences, "Historically, synchrotrons have been racing to provide scientists with experimental tools that glean rapid results. On some of our beamlines, we can now study hundreds or even thousands of samples each day. In areas like structural biology this is vitally important and super fast experiments have become quite routine at Diamond. However, we know that many scientific problems actually call for research to happen on super slow timescales and, counterintuitively, this research is actually much harder to plan for and to succeed in. Diamond's new LDE facility is already helping researchers to conduct long term experiments, focusing on areas such as making better batteries, improving the effectiveness of drugs in hot climates, and testing cement that can be used in the disposal of radioactive materials in the UK's planned geological disposal facility (GDF)."

The LDE is a unique facility and a resource designed to address problems that simply cannot be solved anywhere else. Diamond's synchrotron light illuminates samples around 1000 times better than laboratory microscopes. As well as providing an in-depth insight into materials over an extended period, the LDE can also be tailored to specific temperature or levels of humidity, meaning that scientists can assess material's long-term behaviours in varied environments.

The long-term behaviour of materials has never been studied in this level of detail before, and the facility is revealing new insights into how materials interact on the atomic scale under different conditions and over time.

One of the key projects currently taking place at this world-leading facility is looking into the long-term behaviour of nuclear waste cement as it gradually becomes hydrated by water. This work, led by Dr Claire Corkhill from the University of Sheffield's NucleUS research group, could be vital to informing the UK's strategy on radioactive waste disposal.

Claire explains: "The UK government plans to bury the most dangerous form of its radioactive waste in a geological disposal facility deep underground - somewhere between 200 and 1000 metres under the surface. To put this in context, the London Underground at its deepest is only 65 metres down.

"But because it can take hundreds of thousands of years for this waste to decay to a safe level, the facility needs to be able to endure for an extremely long time. That's why this study is so vital to energy research. By studying the molecular reactions between cement and water over two years, our team can extrapolate the impact over a much longer period."

Claire will be presenting her pioneering work on radioactive waste disposal at the AAAS conference this February 14th. As part of a symposium entitled Cleaner Energy Solutions: What Can 21st Century Large-Scale Physics Deliver? Claire will make up a panel of three leading energy scientists.

Together, the group will discuss their individual research projects and equip the audience with an understanding of pragmatic, achievable solutions to the global warming challenge. This is the ultimate goal for research like Claire's and, with the support of cutting-edge facilities like the LDE, scientists are helping to develop our approach to the challenges presented by climate change. Energy research is just one of the many areas in which the LDE can provide scientists support. The facility puts a call out once each year, and an external panel of experts selects the most intriguing scientific research for further study. Professor Chiu Tang is Principal Beamline Scientist for I11 and the LDE facility.

He says: "We are here to support a class of experiments that could not otherwise be done within the existing science infrastructure. And that's what we're looking for - problems that couldn't be solved any other way and the opportunity to open up avenues of enquiry that have never been thought possible before."

The wider context: further energy research taking place on the LDE facility

The world-leading LDE facility is an important resource for many different scientific fields. Recent expansion has brought the number of experiments that can take place at the facility at once up from 6 to 20.

Currently in progress are experiments into the long-term melting patterns of Arctic sea ice, research into the possible reactions behind the formation of Saturn's icy moons, and studies of the behaviour of common drug compounds under high humidity, mimicking conditions that are common in much of Asia and the pacific.

However, the LDE is especially useful to a particular area of research: energy. Understanding the long-term behaviour of materials involved in our energy infrastructure is vital to improving performance and efficiency at time when we are faced with many questions about the future of our energy resourcing.

In addition to the radioactive waste disposal experiments being led by Dr Claire Corkihill, the LDE currently has two other ongoing experiments that are closely tied to this field. Research into lithium ion batteries is trying to assess how the degradation of cathodes within the batteries cause decreased performance over time. This work could be important to improving battery life for a range of consumer products and may help to make battery power a more widely-used resource.

Further research is looking into the carbon capture potential of metal-organic frameworks (MOFs). These cage-like structures are capable of ensnaring carbon molecules and removing them from the atmosphere. In time, they may offer a valuable means of reducing the damage caused by industrial processes by removing some of the carbon emitted into the air.

However scientists need to know that MOFs can continue to work over long timescales. That's why it's so helpful to be able to test for and assess degradation on the atomic level over a two year period on the LDE.

For these and many other research projects, the cutting-edge LDE facility offers scientists the opportunity to carry out research in a broad range of fields using equipment that is unmatched anywhere else in the world.


Related Links
Diamond Light Source
Stellar Chemistry, The Universe And All Within It

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Mechanical quanta see the light
Vienna, Austria (SPX) Jan 25, 2016
Quantum physics is increasingly becoming the scientific basis for a plethora of new "quantum technologies". These new technologies promise to fundamentally change the way we communicate, as well as radically enhance the performance of sensors and of our most powerful computers. One of the open challenges for practical applications is how to make different quantum technologies talk to each other. ... read more

Edgar Mitchell, astronaut who walked on Moon, dead at 85

The forgotten moon landing that paved the way for today's space adventures

ASU satellite selected for NASA Space Launch System's first flight

Lunar Flashlight selected to fly as secondary payload on Exploration Mission-1

Becoming a Martian

Site of Martian lakes linked to ancient habitable environment

Opportunity climbing steeper slopes to reach science targets

Opportunity Reaches 12 Years on Mars!

Are private launches changing the rocket equation?

NASA tests solar sail deployment for asteroid-surveying CubeSat NEA Scout

Orion Crew Module processing begins for first mission

Mars or the Moon

China Conducts Final Tests on Most Powerful Homegrown Rocket

Last Launch for Long March 2F/G

China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Putting the Public in the Shoes of Space Station Science

Russians spacewalk to retrieve biological samples

Russia to Deliver Three Advanced Spacesuits to ISS in 2016

Russian spacewalk marks end of ESA's exposed space chemistry

SES-9 Launch Targeting Late February

Spaceflight Awarded First GSA Schedule Contract for Satellite Launch Services

Arianespace to launch two ViaSat high capacity satellites

SpaceX Conducts Hover Tests

Earth-like planets have Earth-like interiors

The frigid Flying Saucer

Astronomers discover largest solar system

Lonely Planet Finds a Mum a Trillion Km Away

Some 5,000 years ago, silver mining on the shores of the Aegean Sea

Chemical cages: New technique advances synthetic biology

Why not recycled concrete

UBC researchers discover new glass technology

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.