Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















OUTER PLANETS
Experiment resolves mystery about wind flows on Jupiter
by Staff Writers
Los Angeles CA (SPX) Jan 24, 2017


This is a view of Jupiter's south pole (upper left and lower right) and lab results from a new model of Jupiter's winds (upper right and lower left). Image courtesy Jonathan Aurnou.

One mystery has been whether the jets exist only in the planet's upper atmosphere - much like the Earth's own jet streams - or whether they plunge into Jupiter's gaseous interior. If the latter is true, it could reveal clues about the planet's interior structure and internal dynamics.

Now, UCLA geophysicist Jonathan Aurnou and collaborators in Marseille, France, have simulated Jupiter's jets in the laboratory for the first time. Their work demonstrates that the winds likely extend thousands of miles below Jupiter's visible atmosphere.

"We can make these features in a computer, but we couldn't make them happen in a lab," said Aurnou, a UCLA professor of earth, planetary and space sciences, who has spent the past decade studying computer models of swirling winds. "If we have a theoretical understanding of a system, we should be able to create an analog model."

The challenge to re-creating swirling winds in the lab was building a model of a planet with three key attributes believed to be necessary for jets to form: rapid rotation, turbulence and a "curvature effect" that mimics the spherical shape of a planet. Previous attempts to create jets in a lab often failed because researchers couldn't spin their models fast enough or create enough turbulence, Aurnou said.

The breakthrough for Aurnou's team was a new piece of laboratory equipment. The researchers used a table built on air bearings that can spin at 120 revolutions per minute and support a load of up to 1,000 kilograms (about 2,200 pounds), meaning that it could spin a large tank of fluid at high speed in a way that mimics Jupiter's rapid rotation.

The scientists filled an industrial-sized garbage with 400 liters (about 105 gallons) of water and placed it on the table. When the container spun, water was thrown against its sides, forming a parabola that approximated the curved surface of Jupiter.

"The faster it went, the better we mimicked the massively strong effects of rotation and curvature that exists on planets," Aurnou said. But the team found that 75 revolutions per minute was a practical limit: fast enough to force the liquid into a strongly curved shape but slow enough to keep water from spilling out.

While the can was spinning, scientists used a pump below its false floor to circulate water through a series of inlet and outlet holes, which created turbulence - one of the three critical conditions for the experiment. That turbulent energy was channeled into making jets, and within minutes the water flow had changed to six concentric flows moving in alternating directions.

"This is the first time that anyone has demonstrated that strong jets that look like those on Jupiter can develop in a real fluid," Aurnou said.

The researchers inferred that the jets were deep because they could see them on the surface of the water, even though they had injected turbulence at the bottom.

The researchers are looking forward to testing their predictions with real data from Jupiter, and they won't have to wait long: NASA's Juno space probe is orbiting Jupiter right now, collecting data about its atmosphere, magnetic field and interior. Initial results from the Juno mission were presented at the American Geophysical Union meeting in December in San Francisco, and Aurnou was there.

"The Juno data from the very first flyby of Jupiter showed that structures of ammonia gas extended over 60 miles into Jupiter's interior, which was a big shock to the Juno science team," Aurnou said. "UCLA researchers will be playing an important role in explaining the data."

This year, Aurnou and his team will use supercomputers at Argonne National Laboratory in Argonne, Illinois, to simulate the dynamics of Jupiter's interior and atmosphere. They'll also continue their work at the laboratory in Marseilles to make the spinning table simulation more complex and more realistic.

One goal is to add a thin, stable layer of fluid on top of the spinning water, which would function like the thin outer layer of Jupiter's atmosphere that's responsible for the planet's weather. The researchers believe this will help them simulate features like Jupiter's famous Great Red Spot.

This research is published online in Nature Physics.


Comment on this article using your Disqus, Facebook, Google or Twitter login.

.


Related Links
University of California - Los Angeles
The million outer planets of a star called Sol






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
OUTER PLANETS
Public to Choose Jupiter Picture Sites for NASA Juno
Pasadena CA (JPL) Jan 20, 2017
Where should NASA's Juno spacecraft aim its camera during its next close pass of Jupiter on Feb. 2? You can now play a part in the decision. For the first time, members of the public can vote to participate in selecting all pictures to be taken of Jupiter during a Juno flyby. Voting begins Thursday, Jan. 19 at 11 a.m. PST (2 p.m. EST) and concludes on Jan. 23 at 9 a.m. PST (noon EST). "We ... read more


OUTER PLANETS
Scientists and students tackle omics at NASA workshop

Mister Trump Goes to Washington

Airbus delivers propulsion test module for the Orion programme to NASA

NASA to rely on Soyuz for ISS missions until 2019

OUTER PLANETS
Airbus Safran Launchers in 2016: we keep our promises

ULA and team launches US military spy satellite

India Defers Much-Awaited Heaviest Rocket Launch

When One launch is not enough: SpaceX Return To Flight

OUTER PLANETS
Long Eclipse Avoidance Manoeuvres Performed Successfully on MOM Spacecraft

Commercial Crew's Role in Path to Mars

Similar-Looking Ridges on Mars Have Diverse Origins

Bursts of methane may have warmed early Mars

OUTER PLANETS
China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

China Space Plan to Develop "Strength and Size"

Beijing's space program soars in 2016

OUTER PLANETS
ESA Planetary Science Archive gets a new look

Iridium-1 NEXT Launched on a Falcon 9

Shaping the Future: Aerospace Works to Ensure an Informed Space Policy

Russia-China Joint Space Studies Center May Be Created in Southeastern Russia

OUTER PLANETS
NanoSpace receives commercial order to supply components to TURKSAT 6A

First European-built all-electric satellite EUTELSAT 172B getting ready to fly

NSC to deliver virtual training gear to British army

Metallic hydrogen, once theory, becomes reality

OUTER PLANETS
First footage of a living stylodactylid shrimp filter-feeding at depth of 4826m

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

Looking for life in all the right places with the right tool

Could dark streaks in Venusian clouds be microbial life

OUTER PLANETS
Experiment resolves mystery about wind flows on Jupiter

Public to Choose Jupiter Picture Sites for NASA Juno

Pluto Global Color Map

Lowell Observatory to renovate Pluto discovery telescope




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement