. 24/7 Space News .
TIME AND SPACE
Evidence for a new property of quantum matter revealed
by Staff Writers
Baltimore MD (SPX) Jun 19, 2018

illustration only

A theorized but never-before detected property of quantum matter has now been spotted in the lab, a team of scientists reports.

The team proved that a particular quantum material can demonstrate electrical dipole fluctuations - irregular oscillations of tiny charged poles on the material - even in extremely cold conditions, in the neighborhood of minus 450 degrees Fahrenheit.

The material, first synthesized 20 years ago, is called k-(BEDT-TTF)2Hg(SCN)2 Br. It is derived from organic compounds, but behaves like a metal.

"What we found with this particular quantum material is that, even at super-cold temperatures, electrical dipoles are still present and fluctuate according to the laws of quantum mechanics," said Natalia Drichko, associate research professor in physics at the Johns Hopkins University.

"Usually, we think of quantum mechanics as a theory of small things, like atoms, but here we observe that the whole crystal is behaving quantum-mechanically," said Drichko, senior author of a paper on the research published in the journal Science.

Classical physics describes most of the behavior of physical objects we see and experience in everyday life. In classical physics, objects freeze at extremely low temperatures, Drichko said. In quantum physics - science that has grown up primarily to describe the behavior of matter and energy at the atomic level and smaller - there is motion even at those frigid temperatures, Drichko said.

"That's one of the major differences between classical and quantum physics that condensed matter physicists are exploring," she said.

An electrical dipole is a pair of equal but oppositely charged poles separated by some distance. Such dipoles can, for instance, allow a hair to "stick" to a comb through the exchange of static electricity: Tiny dipoles form on the edge of the comb and the edge of the hair.

Drichko's research team observed the new extreme-low-temperature electrical state of the quantum matter in Drichko's Raman spectroscopy lab, where the key work was done by graduate student Nora Hassan. Team members shined focused light on a small crystal of the material. Employing techniques from other disciplines, including chemistry and biology, they found proof of the dipole fluctuations.

The study was possible because of the team's home-built, custom-engineered spectrometer, which increased the sensitivity of the measurements 100 times.

The unique quantum effect the team found could potentially be used in quantum computing, a type of computing in which information is captured and stored in ways that take advantage of the quantum states of matter.

Research paper


Related Links
Johns Hopkins University
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
'Spooky action at a distance': Researchers develop module for quantum repeater
Saarland, Germany (SPX) Jun 11, 2018
Communication using quantum states offers ultimate security, because eavesdropping attempts perturb the signal and would therefore not remain undetected. For the same reason, though, long-distance transmission of that information is difficult. In classical telecommunication, the increasing attenuation of the signal is counteracted by measuring, amplifying and re-sending it in so-called repeater stations, but this turns out to be as detrimental to the quantum information as an eavesdropper. T ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Astronaut Sally Ride's legacy of encouraging young women to embrace science and engineering

Space tourism not far off, rocket maker says

Space Station Roulette

Peggy Whitson, NASA's most experienced astronaut, retires

TIME AND SPACE
S7 space mulls restoring production of heavy rocket engines in Russia

ESA Council commits to Ariane 6 and transition from Ariane 5

Re-generatively cooled RL10 Thrust Chamber Assembly test validates 3D printing process

Sample Return Technology Successfully Tested on Xodiac Rocket

TIME AND SPACE
Explosive volcanoes spawned mysterious Martian rock formation

Unique microbe could thrive on Mars, help future manned missions

NASA spacecraft studying massive Martian dust storm

Opportunity rover sends transmission amid Martian dust storm

TIME AND SPACE
China confirms reception of data from Gaofen-6 satellite

Experts Explain How China Is Opening International Space Cooperation

Beijing welcomes use of Chinese space station by all UN Nations

China upgrades spacecraft reentry and descent technology

TIME AND SPACE
US FCC expands market access for SES O3b MEO constellation

Liftoff as Alexander Gerst returns to space

Lockheed Martin Announces $100 Million Venture Fund Increase

Iridium Continues to Attract World Class Maritime Service Providers for Iridium CertusS

TIME AND SPACE
Combining experts and automation in 3D printing

The right chemistry, fast: employing AI and Automation to map out and make molecules

Dutch software makes supercomputer from laptop

Ground-breaking discoveries could create superior alloys with many applications

TIME AND SPACE
Astronomers identify 121 giant planets likely to host habitable moons

Hawking plea 'to save planet' beamed to black hole

Study could help humans colonise Mars and hunt for alien life

Chandra Scouts Nearest Star System for Possible Hazards

TIME AND SPACE
A dark and stormy Jupiter

NASA shares more Pluto images from New Horizons

Juno Solves 39-Year Old Mystery of Jupiter Lightning

NASA Re-plans Juno's Jupiter Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.