. 24/7 Space News .
Envisat's MERIS Captures Phytoplankton Bloom

An example of phytoplankton cell Credits: Courtesy of Dr Jeremy R. Young, copyright the Natural History Museum of London

Paris (ESA) Nov 22, 2002
From 800 km in space, you would have to squint really hard to see one of these -- a micron-sized phytoplankton and its armoured shell. But when a lot of them get together, say, a few trillion or so ...

... what you see is the image below from the European Space Agency's Medium Resolution Imaging Spectrometer (MERIS) instrument. The sensor, carried onboard the Envisat satellite, acquired imagery of a phytoplankton bloom that occurred this summer in the north Atlantic, off the coasts of Nova Scotia and Newfoundland in Canada.

The large, aquamarine-coloured patch visible in the image is a 300 x 200 km ocean area densely populated with phytoplankton, small aquatic organisms that form the basis of the ocean's food chain and play a key role in the global ecosystem.

These blooms -- the sudden appearance of phytoplankton in massive numbers, enough to colour the ocean and be detected from orbiting sensors -- are capable of being analysed now on a global scale only in the past few decades with the advent of satellite-based sensors. The MERIS instrument offers new capabilities to marine researchers interested in phytoplankton blooms and other ocean processes.

Phytoplankton blooms are a fairly common occurrence, most often found in temperate waters. A recent study from the US National Aeronautics and Space Administration and the National Oceanic and Atmospheric Administration found an overall annual decrease in phytoplankton globally, with phytoplankton levels in open waters near the equator increasing significantly, and decreasing in many areas of open water in northern oceans.

By bloom standards, the Canadian one was not particularly large. In comparison, it was smaller than the large blooms seen regularly south of Iceland, which measured 1000 x 300 km in 1991. "It's very much smaller than the bloom in the Bering Sea in the northern Pacific in 1998-99, which lasted six months or more," says Prof Jim Aiken with the Plymouth Marine Laboratory (PML), a UK centre for investigating marine biodiversity and the role of the oceans in global climate change.

Blooming off-season
What made this bloom interesting to researchers was when it occurred, in late summer. Typically, phytoplankton bloom in temperate latitudes every spring. During the winter, the lack of sufficient sunlight, too much wind and lower temperatures keep the phytoplankton population at a minimum. As the season changes, however, the amount of sunlight increases, the water heats up and the surface layer of the ocean stratifies, keeping plants near the surface. The phytoplankton start growing again, "just like land plants do in the springtime," Aiken describes.

So-called "upwellings" can also cause the population of phytoplankton to explode suddenly. In these events, seen off the west coast of Africa and off the South American coast near Peru, cold water is pushed up from the ocean depths and brings with it rich nutrients, with a resulting explosive growth in the phytoplankton population.

"When the deep water hits the surface, the nutrients plus the sunlight result in a bonanza for the phytoplankton, and you get blooms," explains Dr. Toby Tyrrell, an ecological modeller with the Southampton Oceanography Centre (SOC), part of the University of Southampton in the UK.

The Canadian phytoplankton bloom was not associated with an upwelling and fell outside the normal springtime bloom pattern. Late summer blooms are a phenomenon that is not completely understood by marine biologists, but one in which satellite imagery is a key scientific tool in conducting further research. "We don't have a good understanding of what factors can produce phytoplankton blooms later in the year," Tyrrell adds.

"We can hypothesize in the seasonal successions, the diatoms -- minute, single-cell planktons -- appear first," explains PML's Aiken. "They form glass-like silica shells that use the silicate in the water, but they may not use up all the other nutrients such as nitrates and phosphates. Then other forms of phytoplankton appear later that feed off these other nutrients."

Based on the optical characteristics from the MERIS image, the phytoplankton colony that appeared off the coast of Canada was probably a species known as Emiliana huxleyi, or Ehux more familiarly, one of the approximately 5000 different species of phytoplankton. As seen in the accompanying electron microscope image, each plate of the shell resembles a car's hubcap and remains in the ocean after the organism itself has died.

These organisms measure roughly five microns in diameter, with shells, called coccoliths, about one micron thick.

Line up ten of them, and they would fit across the width of an average strand of human hair.

They may be small, but collectively they pack a huge punch. "The total phytoplankton biomass is probably greater than that of all the marine animals (zooplankton, fish, whales) put together," says Tyrrell. "Phytoplankton productivity is one of the primary forces in regulating our planetary climate."

A fundamental snack
Phytoplankton are the first course in the food-chain buffet.

They provide the basic nourishment for larger zooplankton, shrimp-like krill, and related ocean dwellers known as euphasiids that are, in turn, the food source for several types of fish, seabirds and other marine animals.

Although these links are well known, there are still unanswered questions about the role phytoplankton and phytoplankton blooms play in the production of the types of seafood that we want to appear on our dinner plates.

They also play various, and significant, parts in regulating Earth's climate and other ecosystems. Large concentrations of this phytoplankton reflect sunlight back out into space; other types absorb sunlight. This affects the Earth's albedo, the ratio of light reflected off the Earth's surface versus the amount of sunlight falling on it, thus affecting global warming. Phytoplankton also release sulphur compounds, some of which make it into the atmosphere and there assist cloud formation, shielding the Earth from incoming solar radiation.

Thanks to the presence of photosynthetic chlorophyll pigments, these simple organisms also play a similar role to terrestrial "green" plants in the photosynthetic process. Phytoplankton are able to convert inorganic compounds such as water, nitrogen and carbon into complex organic materials. With their ability to "digest" these compounds, they are credited with removing as much carbon dioxide from the atmosphere as their earthbound cousins.

In the past few centuries, extensive deforestation, changes in land-use patterns and, particularly, the use of fossil fuels have resulted in massive increases of carbon dioxide in the atmosphere. Carbon dioxide is one of several "greenhouse" gases responsible for mediating the temperature of our planet.

"It has been suggested by international committees that the increase in atmospheric carbon dioxide concentration may be responsible for undesirable climate changes causing natural disasters such as floods, desertification and coastal erosion," Aiken comments, adding that phytoplankton are estimated to account for about 50 percent of the biosphere's photosynthesis, are strongly involved in the carbon cycle and play a fundamental role in regulating the Earth's climate.

Despite their beneficial impact on absorbing at least one of the greenhouse gases, more is not necessarily better.

In Ehux blooms occurring in the Bering Sea, for instance, diving sea birds could not see their prey because the waters were so murky, according to SOC's Tyrrell. And, he added, because Ehux build their shells out of calcium carbonate, this alters the water's alkalinity and actually makes the oceans emit carbon dioxide.


Related Links
Envisat
Plymouth Marine Laboratory
Southhampton Oceanography Centre
Ehux home page
International Nannoplankton Association
The Natural History Museum
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Envisat's ASAR Reveals Extent Of Massive Oil Spill Off Spanish Coast
Paris (ESA) Nov 22, 2002
Oil from the wrecked tanker off the northwest coast of Spain had already reached the Spanish coast when ESA's Envisat satellite acquired this radar image of the oil slick, stretching more than 150 km, on Sunday, 17 November, at 10.45 UTC.







  • Take A Chance To Write The Future
  • Actel Delivers SX-A FPGAs Qualified to Military Specifications
  • Maxwell Hardens Powerpc Board For Space And Military Applications
  • Boeing-Built NASA Satellite Successfully Reaches Geosynchronous Orbit

  • Where on Earth Is Mars?
  • Revealing Chandra image shows Mars glows in X-rays
  • Mars Rover Takes Baby Steps
  • Hidden Face of Mars Uncovered by Father & Daughter

  • Delta 4 Successfully Delivers GEO-Bound Payload On Maiden Flight
  • Arianespace to Launch Fourth Indonesian Satellite
  • Space Station Facing Uncertain Future As Soyuz Explodes On Liftoff
  • Boeing Delta IV Team Takes Major Step Toward First Launch

  • Envisat's MERIS Captures Phytoplankton Bloom
  • Envisat's ASAR Reveals Extent Of Massive Oil Spill Off Spanish Coast
  • Map Data Goes Live With Voice, Gesture-Based Computer System
  • PRA Launches GIS Express Service

  • New Horizons Passes Another Development Milestone
  • The bizarre "Pluto War" is almost over at last, and Pluto is winning.
  • The bizarre "Pluto War" is almost over at last, and Pluto is winning.
  • Pluto Is Undergoing Global Warming

  • Gravity-Wave Search Produces Initial Data
  • In Search Of Cosmic Mayhem
  • Bouncing Cosmic Mysteries Off Kuiper Worlds
  • Gravity Waves Analysis Opens 'Completely New Sense'

  • Memories Of Orange Rock From The Lunar Age
  • Taos Goes Lunar With International Talkfest
  • Moon and Earth Formed out of Identical Material
  • Lunar Soil Yields Evidence About Sun's Dynamic Workings

  • Sinking Boats Raise Automatic Alarm Up To Space
  • SkyBitz Raises $18 Million For Global Tracking Service
  • Fastrax To Offer GPS+GPRS Telematics With Embedded Solution
  • Fastrax GPS Powers Telematics For Fleet Management

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement