. 24/7 Space News .
INTERNET SPACE
Engineers shrink microscope to dime-sized device
by Staff Writers
Dallas TX (SPX) Feb 17, 2017


A MEMS-based atomic force microscope developed by engineers at the University of Texas at Dallas is about 1 square centimeter in size (top center). Here it is attached to a small printed circuit board that contains circuitry, sensors and other miniaturized components that control the movement and other aspects of the device. Image courtesy University of Texas at Dallas.

Researchers at The University of Texas at Dallas have created an atomic force microscope on a chip, dramatically shrinking the size - and, hopefully, the price tag - of a high-tech device commonly used to characterize material properties.

"A standard atomic force microscope is a large, bulky instrument, with multiple control loops, electronics and amplifiers," said Dr. Reza Moheimani, professor of mechanical engineering at UT Dallas. "We have managed to miniaturize all of the electromechanical components down onto a single small chip."

Moheimani and his colleagues describe their prototype device in this month's issue of the IEEE Journal of Microelectromechanical Systems. An atomic force microscope (AFM) is a scientific tool that is used to create detailed three-dimensional images of the surfaces of materials, down to the nanometer scale - that's roughly on the scale of individual molecules.

The basic AFM design consists of a tiny cantilever, or arm, that has a sharp tip attached to one end. As the apparatus scans back and forth across the surface of a sample, or the sample moves under it, the interactive forces between the sample and the tip cause the cantilever to move up and down as the tip follows the contours of the surface. Those movements are then translated into an image.

"An AFM is a microscope that 'sees' a surface kind of the way a visually impaired person might, by touching. You can get a resolution that is well beyond what an optical microscope can achieve," said Moheimani, who holds the James Von Ehr Distinguished Chair in Science and Technology in the Erik Jonsson School of Engineering and Computer Science. "It can capture features that are very, very small."

The UT Dallas team created its prototype on-chip AFM using a microelectromechanical systems (MEMS) approach.

"A classic example of MEMS technology are the accelerometers and gyroscopes found in smartphones," said Dr. Anthony Fowler, a research scientist in Moheimani's Laboratory for Dynamics and Control of Nanosystems and one of the article's co-authors. "These used to be big, expensive, mechanical devices, but using MEMS technology, accelerometers have shrunk down onto a single chip, which can be manufactured for just a few dollars apiece."

The MEMS-based AFM is about 1 square centimeter in size, or a little smaller than a dime. It is attached to a small printed circuit board, about half the size of a credit card, which contains circuitry, sensors and other miniaturized components that control the movement and other aspects of the device.

Conventional AFMs operate in various modes. Some map out a sample's features by maintaining a constant force as the probe tip drags across the surface, while others do so by maintaining a constant distance between the two. "The problem with using a constant height approach is that the tip is applying varying forces on a sample all the time, which can damage a sample that is very soft," Fowler said. "Or, if you are scanning a very hard surface, you could wear down the tip,"

The MEMS-based AFM operates in "tapping mode," which means the cantilever and tip oscillate up and down perpendicular to the sample, and the tip alternately contacts then lifts off from the surface. As the probe moves back and forth across a sample material, a feedback loop maintains the height of that oscillation, ultimately creating an image.

"In tapping mode, as the oscillating cantilever moves across the surface topography, the amplitude of the oscillation wants to change as it interacts with sample," said Dr. Mohammad Maroufi, a research associate in mechanical engineering and co-author of the paper. "This device creates an image by maintaining the amplitude of oscillation." Because conventional AFMs require lasers and other large components to operate, their use can be limited. They're also expensive.

"An educational version can cost about $30,000 or $40,000, and a laboratory-level AFM can run $500,000 or more," Moheimani said. "Our MEMS approach to AFM design has the potential to significantly reduce the complexity and cost of the instrument.

"One of the attractive aspects about MEMS is that you can mass produce them, building hundreds or thousands of them in one shot, so the price of each chip would only be a few dollars. As a result, you might be able to offer the whole miniature AFM system for a few thousand dollars."

A reduced size and price tag also could expand the AFMs' utility beyond current scientific applications.

"For example, the semiconductor industry might benefit from these small devices, in particular companies that manufacture the silicon wafers from which computer chips are made," Moheimani said. "With our technology, you might have an array of AFMs to characterize the wafer's surface to find micro-faults before the product is shipped out." The lab prototype is a first-generation device, Moheimani said, and the group is already working on ways to improve and streamline the fabrication of the device.

"This is one of those technologies where, as they say, 'If you build it, they will come.' We anticipate finding many applications as the technology matures," Moheimani said.

Research paper

INTERNET SPACE
Snap prices IPO, seeks more than $2 bn
San Francisco (AFP) Feb 16, 2017
Snapchat's corporate parent seeks to raise more than $2 billion for the fast-growing social media group in the tech sector's largest public offering in nearly three years, documents filed Thursday showed. Outlining the financial details of its initial public offering (IPO), Snap Inc. said it expects net proceeds of some $2 billion. It will offer 145 million new shares and sell 55 million ... read more

Related Links
University of Texas at Dallas
Satellite-based Internet technologies


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

INTERNET SPACE
Russian cargo ship docks with space station

Russia to carry out tourist flights around Moon by 2022

NASA selects proposals for first-ever Space Technology Research Institutes

NASA saves energy and water with new modular supercomputing facility

INTERNET SPACE
Spacex To Send Privately Crewed Dragon Spacecraft Beyond The Moon Next Year

Sounding Rocket Flies in Alaska to Study Auroras

SpaceX cargo ship arrives at space station

SpaceX cargo ship aborts rendezvous with space station

INTERNET SPACE
NASA mulls putting astronauts on deep space test flight

Opportunity leaving crater rim for the Plains of Meridiani

Scientists say Mars valley was flooded with water not long ago

Researchers pinpoint watery past on Mars

INTERNET SPACE
China to launch first high-throughput communications satellite in April

Chinese cargo spacecraft set for liftoff in April

China looks to Mars, Jupiter exploration

China's first cargo spacecraft to leave factory

INTERNET SPACE
Kacific places order with Boeing for a high throughput satellite

ESA affirms Open Access policy for images, videos and data

Iridium Announces Target Date for Second Launch of Iridium NEXT

Italy, Russia working closely on Mars exploration, Earth monitoring satellites

INTERNET SPACE
Raytheon gets contract for Silent Knight radar systems

Kelvin Hughes to provide SharpEye radars for U.K. OPVs

Terma partner wins Indian radar contract

Two radar eyes are better than one

INTERNET SPACE
Does Pluto Have The Ingredients For Life?

Ancient microbes push limits of what life can survive on Earth, and off

Prediction: More gas-giants will be found orbiting Sun-like stars

From Rocks, Evidence of a 'Chaotic Solar System'

INTERNET SPACE
Juno to remain in current orbit at Jupiter

Europa Flyby Mission Moves into Design Phase

NASA receives science report on Europa lander concept

New Horizons Refines Course for Next Flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.