. 24/7 Space News .
ROBO SPACE
Engineers program marine robots to take calculated risks
by Jennifer Chu for MIT News
Boston MA (SPX) Feb 01, 2019

MIT engineers have now developed an algorithm that lets autonomous underwater vehicles weigh the risks and potential rewards of exploring an unknown region. (NASA file image)

We know far less about the Earth's oceans than we do about the surface of the moon or Mars. The sea floor is carved with expansive canyons, towering seamounts, deep trenches, and sheer cliffs, most of which are considered too dangerous or inaccessible for autonomous underwater vehicles (AUV) to navigate.

But what if the reward for traversing such places was worth the risk?

MIT engineers have now developed an algorithm that lets AUVs weigh the risks and potential rewards of exploring an unknown region. For instance, if a vehicle tasked with identifying underwater oil seeps approached a steep, rocky trench, the algorithm could assess the reward level (the probability that an oil seep exists near this trench), and the risk level (the probability of colliding with an obstacle), if it were to take a path through the trench.

"If we were very conservative with our expensive vehicle, saying its survivability was paramount above all, then we wouldn't find anything of interest," says Benjamin Ayton, a graduate student in MIT's Department of Aeronautics and Astronautics. "But if we understand there's a tradeoff between the reward of what you gather, and the risk or threat of going toward these dangerous geographies, we can take certain risks when it's worthwhile."

Ayton says the new algorithm can compute tradeoffs of risk versus reward in real time, as a vehicle decides where to explore next. He and his colleagues in the lab of Brian Williams, professor of aeronautics and astronautics, are implementing this algorithm and others on AUVs, with the vision of deploying fleets of bold, intelligent robotic explorers for a number of missions, including looking for offshore oil deposits, investigating the impact of climate change on coral reefs, and exploring extreme environments analogous to Europa, an ice-covered moon of Jupiter that the team hopes vehicles will one day traverse.

"If we went to Europa and had a very strong reason to believe that there might be a billion-dollar observation in a cave or crevasse, which would justify sending a spacecraft to Europa, then we would absolutely want to risk going in that cave," Ayton says. "But algorithms that don't consider risk are never going to find that potentially history-changing observation."

Ayton and Williams, along with Richard Camilli of the Woods Hole Oceanographic Institution, will present their new algorithm at the Association for the Advancement of Artificial Intelligence conference this week in Honolulu.

A bold path
The team's new algorithm is the first to enable "risk-bounded adaptive sampling." An adaptive sampling mission is designed, for instance, to automatically adapt an AUV's path, based on new measurements that the vehicle takes as it explores a given region. Most adaptive sampling missions that consider risk typically do so by finding paths with a concrete, acceptable level of risk. For instance, AUVs may be programmed to only chart paths with a chance of collision that doesn't exceed 5 percent.

But the researchers found that accounting for risk alone could severely limit a mission's potential rewards.

"Before we go into a mission, we want to specify the risk we're willing to take for a certain level of reward," Ayton says. "For instance, if a path were to take us to more hydrothermal vents, we would be willing to take this amount of risk, but if we're not going to see anything, we would be willing to take less risk."

The team's algorithm takes in bathymetric data, or information about the ocean topography, including any surrounding obstacles, along with the vehicle's dynamics and inertial measurements, to compute the level of risk for a certain proposed path. The algorithm also takes in all previous measurements that the AUV has taken, to compute the probability that such high-reward measurements may exist along the proposed path.

If the risk-to-reward ratio meets a certain value, determined by scientists beforehand, then the AUV goes ahead with the proposed path, taking more measurements that feed back into the algorithm to help it evaluate the risk and reward of other paths as the vehicle moves forward.

The researchers tested their algorithm in a simulation of an AUV mission east of Boston Harbor. They used bathymetric data collected from the region during a previous NOAA survey, and simulated an AUV exploring at a depth of 15 meters through regions at relatively high temperatures. They looked at how the algorithm planned out the vehicle's route under three different scenarios of acceptable risk.

In the scenario with the lowest acceptable risk, meaning that the vehicle should avoid any regions that would have a very high chance of collision, the algorithm mapped out a conservative path, keeping the vehicle in a safe region that also did not have any high rewards - in this case, high temperatures. For scenarios of higher acceptable risk, the algorithm charted bolder paths that took a vehicle through a narrow chasm, and ultimately to a high-reward region.

The team also ran the algorithm through 10,000 numerical simulations, generating random environments in each simulation through which to plan a path, and found that the algorithm "trades off risk against reward intuitively, taking dangerous actions only when justified by the reward."

A risky slope
Last December, Ayton, Williams, and others spent two weeks on a cruise off the coast of Costa Rica, deploying underwater gliders, on which they tested several algorithms, including this newest one. For the most part, the algorithm's path planning agreed with those proposed by several onboard geologists who were looking for the best routes to find oil seeps.

Ayton says there was a particular moment when the risk-bounded algorithm proved especially handy. An AUV was making its way up a precarious slump, or landslide, where the vehicle couldn't take too many risks.

"The algorithm found a method to get us up the slump quickly, while being the most worthwhile," Ayton says. "It took us up a path that, while it didn't help us discover oil seeps, it did help us refine our understanding of the environment."

In their long-term vision, the researchers hope to use such algorithms to help autonomous vehicles explore environments beyond Earth.

"If we went to Europa and weren't willing to take any risks in order to preserve a probe, then the probability of finding life would be very, very low," Ayton says. "You have to risk a little to get more reward, which is generally true in life as well."


Related Links
Massachusetts Institute of Technology
All about the robots on Earth and beyond!


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ROBO SPACE
Automation to hit most jobs, but overall impact 'muted': study
Washington (AFP) Jan 24, 2019
Artificial intelligence and automation will lead to job losses in "virtually all occupational groups" over the coming decades in the United States, but the overall impact on employment will be "muted," a prominent think tank study said Thursday. "Almost no occupation will be unaffected by the adoption of currently available technologies," said the Brookings Institution study. The researchers, examining some 800 occupations, concluded that roughly 25 percent of US employment, or 36 million jobs i ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
Blue Origin to make 10th flight test of space tourist rocket

Duration of UAE Astronaut's Mission on Board ISS Reduced to 8 Days

NASA Announces Updated Crew Assignment for Boeing Flight Test

China is growing crops on the far side of the moon

ROBO SPACE
Jeff Bezos's Blue Origin rocket makes 10th flight test

Countdown for launch of DRDO satellite starts

Japan launches Epsilon-4 Rocket with 7 satellites

United Launch Alliance Successfully Launches NROL-71 in Support of National Security

ROBO SPACE
NASA's Opportunity Rover Logs 15 Years on Mars

Dust storm activity appears to pick up south of Opportunity

ExoMars software passes ESA Mars Yard driving test

Team selected by Canadian Space Agency to study Mars minerals

ROBO SPACE
China to deepen lunar exploration: space expert

China launches Zhongxing-2D satellite

China welcomes world's scientists to collaborate in lunar exploration

In space, the US sees a rival in China

ROBO SPACE
Thales Alenia Space and Maxar Consortium Achieve Major Milestone in Design Phase of Telesat's LEO Satellite Constellation

Swarm Raises 25M to build world's lowest-cost satellite network

OneWeb's first satellites arrive in Kourou, French Guiana in preparation for the first OneWeb launch on February 19, 2019

mu Space unveils plan to bid for space exploration projects

ROBO SPACE
Use a microscope as a shovel? UConn researchers dig it

Laser-fabricated crystals in glass are ferroelectric

Billion-euro SAP restructuring to cost 4,400 jobs

The energy implications of organic radical polymers

ROBO SPACE
Where Is Earth's Submoon?

Planetary collision that formed the Moon made life possible on Earth

Astronomers find star material could be building block of life

Double star system flips planet-forming disk into pole position

ROBO SPACE
New Horizons' Newest and Best-Yet View of Ultima Thule

Juno's Latest Flyby of Jupiter Captures Two Massive Storms

Outer Solar System Orbits Not Likely Caused by "Planet Nine"

Scientist Anticipated "Snowman" Asteroid Appearance









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.