Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















TECH SPACE
Engineering researchers use laser to 'weld' neurons
by Staff Writers
Edmonton, Canada (SPX) Feb 12, 2016


UAlberta electrical engineering Ph.D. student Nir Katchinskiy led a research project that was able to "weld" neurons together using a femtosecond laser. Image courtesy UAlberta Engineering. For a larger version of this image please go here.

A research team based in the University of Alberta Faculty of Engineering has developed a method of connecting neurons, using ultrashort laser pulses - a breakthrough technique that opens the door to new medical research and treatment opportunities. The team is the first ever to find a way to bond neurons and in doing so, has given researchers a powerful new tool. Neurons are cells in the nervous system that are responsible for transferring information between the brain and the rest of the body.

"The immediate application is for researchers. They finally have a new tool to do what they have not been able to do before," said Nir Katchinskiy, a second-year PhD student in Electrical Engineering who led the study. "We're engineers. We come up with tools that provide potential."

Katchinskiy had a real-life application in mind when he started the project. "I was really interested in the nervous system - if you have a severed nerve, you can't repair it," he said. "My thought was, what if we could 'weld' it back up right after it's injured?"

To conduct the study, two neurons, put in a special solution that prevents them from sticking together, were brought into contact with each other. Femtosecond laser pulses - each ultrashort pulse occurring every 10-15 seconds - were delivered to the meeting point of the two cells. Although the outside layer of the cells was partially compromised, the inside of that protective layer remained intact. As a result, the two cells established solid bonds forming a common membrane at the targeted area.

Throughout multiple experiments, the cells remained viable and the connection strong. It took the neurons 15 milliseconds to stick to each other - the process would have taken hours to occur naturally.

The biggest advantage of the discovery is that it gives researchers complete control on the cell connection process. "You can really plan any experiment. The idea is to show that you can use it (femtosecond laser) as a research tool to control what you are attaching," said Katchinskiy.

"You may not be able to go in and treat the human spine with this, but it brings you closer," said electrical engineering professor Abdul Elezzabi, who is a co-author of the paper and Katchinskiy's research supervisor. "But it brings you closer to how these things work."

So far, the team has applied this method to three types of cells, but the potential of the technique seems limitless. For this project, Katchinskiy and Elezzabi, who are in the Department of Electrical and Computer Engineering, teamed up with professor Roseline Godbout from the U of A's Department of Oncology and Cross Cancer Institute and Dr. Helly Goez, a professor in the division of pediatric neurology in the Department of Pediatrics at the U of A Faculty of Medicine and Dentistry. Both are also co-authors of the paper.

"We have two of the biggest researchers on cancer working with us," said Elezzabi, a professor who is Katchinskiy's research supervisor. Elezzabi says femtosecond lasers can prove efficient in prostate, brain and ocular cancer research and treatment. Another possible application is in post cancer surgery treatment.

The team's findings are published in the flagship scientific journal Nature Scientific Reports.

.


Related Links
University of Alberta
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Laser Debris Shields
Surrey UK (SPX) Jan 26, 2016
Optical Surfaces Ltd. is a leading supplier of laser debris shields (also known as protective windows or cover slides) to protect target-facing optics located in high-power laser facilities. Debris shields help prevent damage to the focusing optics in laser beam delivery systems caused by dust, shrapnel and fragments originating from the target during laser processing. Optical Surfaces' de ... read more


TECH SPACE
Edgar Mitchell, astronaut who walked on Moon, dead at 85

The forgotten moon landing that paved the way for today's space adventures

ASU satellite selected for NASA Space Launch System's first flight

Lunar Flashlight selected to fly as secondary payload on Exploration Mission-1

TECH SPACE
Opportunity climbing steeper slopes to reach science targets

Opportunity Reaches 12 Years on Mars!

4 people to live in an HERA habitat for 30 days at JSC

Sandy Selfie Sent from NASA Mars Rover

TECH SPACE
Are private launches changing the rocket equation?

NASA tests solar sail deployment for asteroid-surveying CubeSat NEA Scout

Mars or the Moon

The Orion Crew Module Pressure Vessel Ready For Testing

TECH SPACE
Last Launch for Long March 2F/G

China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

TECH SPACE
Russians spacewalk to retrieve biological samples

Russia to Deliver Three Advanced Spacesuits to ISS in 2016

Russian spacewalk marks end of ESA's exposed space chemistry

New Tool Provides Successful Visual Inspection of ISS Robot Arm

TECH SPACE
Space Launch System's first flight will launch small Sci-Tech cubesats

Initial launcher assembly clears Ariane 5 for its payload integration process

ILS Proton Successfully Launches Eutelsat 9B for Eutelsat

Pentagon Can't Overcome Its Russian Engines Addiction: McCain

TECH SPACE
The frigid Flying Saucer

Astronomers discover largest solar system

Lonely Planet Finds a Mum a Trillion Km Away

Follow A Live Planet Hunt

TECH SPACE
Body temperature triggers newly developed polymer to change shape

Making sense of metallic glass

Twisted X-rays unravel the complexity of helical structures

A deep look into a single molecule




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.