Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















CARBON WORLDS
Enabling direct carbon capture
by Staff Writers
Thuwal, Saudi Arabia (SPX) Nov 01, 2016


Solid MOF for carbon dioxide capture. Image courtesy 2016 King Abdullah University of Science and Technology. For a larger version of this image please go here.

Carbon dioxide capture is a high-profile area of chemical research offering a direct approach to tackling the rise in atmospheric carbon dioxide. This greenhouse gas is largely blamed for global warming and climate change.

Professor Mohamed Eddaoudi, associate director of the University's Advanced Membranes and Porous Materials Research Center, leads a team of researchers at KAUST who are developing porous solids called metal-organic frameworks (MOFs) for the selective removal of various gases from gas mixtures. Their latest breakthrough material can effectively take up carbon dioxide even when it is present at concentrations as low as 400 parts per million and opens possibilities for capturing CO2 as it is generated.

MOFs contain metal ions or clusters that are held in place by organic molecules known as linkers. Altering the chemical composition and geometry of these two primary components can produce versions with varying and highly selective abilities to adsorb and store gases.

"The discovery of this latest material for capturing carbon dioxide is the result of about four to five years of work on this unique MOF platform," said Eddaoudi. He explained that the key challenge was to create something that could exceed the performance of existing options while also greatly reducing the energy requirements over the full cycle of operation.

The researchers' response was to develop a fluorine-containing MOF in which square-grid layers encompassing Ni(II) metal centers and pyrazine linkers are bridged via pillars composed of niobium, oxygen and the fluorine atoms1.

"The ability to control the distance between the fluorine atoms allowed us to create the ideal square-shaped pockets for trapping carbon dioxide molecules effectively and efficiently and giving our material such impressive performance," said Eddaoudi.

The location of carbon dioxide molecules inside the MOFs was visualized using X-ray diffraction equipment at the University of Stellenbosch in South Africa.

The ability to trap carbon dioxide when it is at very low concentrations makes the new material suitable for a wide range of applications, including the direct capture from air.

Eddaoudi explained that the MOF might be adapted for use in static industrial processes that generate carbon dioxide (such as cement factories), but could also be used on board vehicles such as trucks, cars and aircraft. Capturing the carbon dioxide as soon as it is emitted could be significantly more effective and efficient than going after it when it has mixed in with the atmosphere overall.

"We are now working to scale up the use of this material, allowing us to seek industry collaboration towards eventual commercialization," Eddaoudi said.

Research paper

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
King Abdullah University of Science and Technology
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CARBON WORLDS
Finding ideal materials for carbon capture
Evanston IL (SPX) Oct 26, 2016
In recent years, a class of highly absorbent, nanoporous materials called metal-organic frameworks (MOFs) have emerged as a promising material for carbon capture in power plants. But finding the optimal MOF to do the best job is another story. "People are really excited about these materials because we can make a huge variety and really tune them," said Northwestern University's Randall Q. ... read more


CARBON WORLDS
Home is Where the Astronaut Is

BRICS Space Agencies Sign Memorandum on Cooperation in Space Exploration

Next stop Baikonur for ESA astronaut Thomas Pesquet

Orion Test Article on the Move

CARBON WORLDS
Aerojet Rocketdyne completes SLS launch abort engine hot fire tests

NASA Uses Tunnel Approach to Study How Heat Affects SLS Rocket

SpaceX Aims to Resume Falcon 9 Flights in 2016, Blames Helium Tank for Explosion

Raytheon gets $174 million Hypersonic Air-Breathing Weapon contract

CARBON WORLDS
Curiosity Mars Rover Checks Odd-looking Iron Meteorite

Mars: How Will Humans Get There

New instrument could search for signatures of life on Mars

Detailed images of Schiaparelli and its descent hardware on Mars

CARBON WORLDS
China to launch Long March-5 carrier rocket in November

US, China hold second meeting on advancing space cooperation

China to enhance space capabilities with launch of Shenzhou-11

Ambitious space satellite projects set for liftoff

CARBON WORLDS
ISRO's World record bid: Launching 83 satellites on single rocket

Shared vision and goals for the future of Europe in space

SSL delivers Sky Perfect JSAT satellite to Kourou

Dream coming true for ISS-bound rookie French astronaut

CARBON WORLDS
Launchspace establishes new space debris clean up firm

3-D-printed permanent magnets outperform conventional versions, conserve rare materials

Nickel-78 is a doubly magic isotope supercomputer confirms

Researchers bring eyewear-free 3-D capabilities to small screen

CARBON WORLDS
What happens to a pathogenic fungus grown in space?

How Planets Like Jupiter Form

Giant Rings Around Exoplanet Turn in the Wrong Direction

Preferentially Earth-sized Planets with Lots of Water

CARBON WORLDS
Mystery solved behind birth of Saturn's rings

Last Bits of 2015 Pluto Flyby Data Received on Earth

Uranus may have two undiscovered moons

Possible Clouds on Pluto, Next Target is Reddish




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement