. 24/7 Space News .
CHIP TECH
Electron movement on helium may impact the future of quantum computing
by Staff Writers
Onna, Japan (SPX) Jan 27, 2017


Current and former members of the Quantum Dynamics Unit at OIST. From left to right: Dr. Oleksandr Smorodin, Dr. Alexander Badrutdinov, Professor Denis Konstantinov, and OIST Ph.D. student Jui-Yin Lin. Image courtesy Sarah Wong.

The future of quantum computing is a hot topic not only for experts but also in many commercial and governmental agencies. Rather than processing and storing information as bits in transistors or memories, which limit information to the binary '1' or '0', quantum computers would instead use quantum systems, such as atoms, ions, or electrons, as 'qubits' to process and store "quantum information" in, which can be in an infinite number of combinations of '1 and 0'.

Large technology corporations, such as Google, Microsoft, Intel, and IBM are investing heavily in related projects that may lead to realize the quantum computer and technologies.

At the same time, universities and research institutes around the world are researching novel quantum systems, adoptable for quantum computing. The Quantum Dynamics Unit at the Okinawa Institute of Science and Technology Graduate University (OIST), has recently made novel findings about electrons floating on the surface of liquid helium, a quantum system which may be a new candidate for quantum computing into reality. These results were published in Physical Review B.

One of the common problems in quantum computing research using solids is that it is very difficult to make perfectly identical qubits because intrinsic defects or impurities in the materials used randomly affect each individual qubit performance. "Our motivation for pursuing a liquid helium system is that it is intrinsically pure and free of defects, which theoretically allows for the creation of perfectly identical qubits.

Additionally, we can move electrons in this liquid helium system, which is difficult or nearly impossible in other quantum systems," explained Prof. Denis Konstantinov, head of the Quantum Dynamics Unit. Therefore, it is believed that adopting this system for quantum computing might bring the whole field to the next level.

Utilizing electrons on a liquid helium surface for quantum computing requires isolating individual electrons on a helium surface and controlling their quantum degrees of freedom, either motional or spin.

It may also require the movement of electrons to different locations, thus it is also important to understand the physics of the interaction between electrons and the helium surface. It was previously discovered that electrons on helium can form a two-dimensional crystal, and some unique phenomena occur when this crystal moves along the helium surface, due to the interaction between electrons and surface waves.

The OIST scientists, however, are the first to probe how these phenomena depend on the size of the electron crystal. To test this, Dr. Alexander Badrutdinov, Dr. Oleksandr Smorodin and OIST PhD student Jui-Yin Lin, built a microscopic channel device that contained an electron trap within to isolate a crystal of a relatively small number of electrons.

This crystal would then be moved across the liquid helium surface by altering electrostatic potential of one of the device electrodes. This motion would be detected by measuring image charges, which are induced by the moving electrons, flowing through another electrode using a commercially available current amplifier and lock-in detector.

"This research gave us some insights into the physics of the interaction between electrons and the helium surface, as well as expanded our micro-engineering capabilities" states Dr. Alexander Badrutdinov, a former member of the Quantum Dynamics Unit and the first author of the paper. "We successfully adopted a technology to confine electrons into microscopic devices, on the scale of few microns.

With this technology we studied the motion of microscopic two-dimensional electron crystals along a liquid helium surface and saw no difference between the movement of large electron crystals, on the scale of millions to billions of electrons, and crystals as small as a few thousands of electrons, when theoretically, differences should exist".

This research is the first step at OIST in the prospect of using this system for quantum computing. According to Konstantinov, "the next step in this research is to isolate an even smaller electron crystal, and ultimately, a single electron, and to move them in this system.

Unlike other systems, this system has the potential to be a pure, scalable system with mobile qubits." In theory, this type of system would have the potential to revolutionize the quantum computing research field.

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Okinawa Institute of Science and Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Theorists propose new class of topological metals with exotic electronic properties
Princeton NJ (SPX) Jan 20, 2017
Researchers at Princeton, Yale, and the University of Zurich have proposed a theory-based approach to characterize a class of metals that possess exotic electronic properties that could help scientists find other, similarly-endowed materials. Published in the journal Physical Review X, the study described a new class of metals based on their symmetry and a mathematical classification known ... read more


CHIP TECH
Progress MS-03 cargo spacecraft to reenter January 31

Scientists and students tackle omics at NASA workshop

Airbus delivers propulsion test module for the Orion programme to NASA

Mister Trump Goes to Washington

CHIP TECH
ISRO tests C25 Cryogenic Upper Stage of GSLV MkIII

Major review completed for SLS Exploration Upper Stage

NASA sounding rocket launches into Alaskan night

SmallGEO's first flight reaches orbit

CHIP TECH
Commercial Crew's Role in Path to Mars

Similar-Looking Ridges on Mars Have Diverse Origins

Opportunity marks 13 years of ground operations on Mars

Bursts of methane may have warmed early Mars

CHIP TECH
China looks to Mars, Jupiter exploration

China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

China Space Plan to Develop "Strength and Size"

CHIP TECH
Space, Ukrainian-style: Through Crisis to Revival

ESA Planetary Science Archive gets a new look

Iridium-1 NEXT Launched on a Falcon 9

Shaping the Future: Aerospace Works to Ensure an Informed Space Policy

CHIP TECH
NASA's New Shape-Shifting Radiator Inspired by Origami

Space Traffic Management

Japan 'space junk' collector in trouble

NASA studies cosmic radiation to protect high-altitude travelers

CHIP TECH
New planet imager delivers first science at Keck

First footage of a living stylodactylid shrimp filter-feeding at depth of 4826m

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

Looking for life in all the right places with the right tool

CHIP TECH
Public to Choose Jupiter Picture Sites for NASA Juno

Experiment resolves mystery about wind flows on Jupiter

Pluto Global Color Map

Lowell Observatory to renovate Pluto discovery telescope









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.