. 24/7 Space News .
TIME AND SPACE
Einstein's 'spooky action' goes massive
by Staff Writers
Helsinki, Finland (SPX) Apr 26, 2018

illustration only

Perhaps the strangest prediction of quantum theory is entanglement, a phenomenon whereby two distant objects become intertwined in a manner that defies both classical physics and a "common-sense" understanding of reality. In 1935, Albert Einstein expressed his concern over this concept, referring to it as "spooky action at a distance".

Nowadays, entanglement is considered a cornerstone of quantum mechanics, and it is the key resource for a host of potentially transformative quantum technologies. Entanglement is, however, extremely fragile, and it has previously been observed only in microscopic systems such as light or atoms, and recently in superconducting electric circuits.

In work recently published in Nature, a team led by Prof. Mika Sillanpaa at Aalto University in Finland has shown that entanglement of massive objects can be generated and detected.

The researchers managed to bring the motions of two individual vibrating drumheads - fabricated from metallic aluminium on a silicon chip - into an entangled quantum state. The objects in the experiment are truly massive and macroscopic compared to the atomic scale: the circular drumheads have a diametre similar to the width of a thin human hair.

The team also included scientists from the University of New South Wales Canberra in Australia, the University of Chicago, and the University of Jyvaskyla in Finland. The approach taken in the experiment was based on a theoretical innovation developed by Dr. Matt Woolley at UNSW and Prof. Aashish Clerk, now at the University of Chicago.

'The vibrating bodies are made to interact via a superconducting microwave circuit. The electromagnetic fields in the circuit are used to absorb all thermal disturbances and to leave behind only the quantum mechanical vibrations,' says Mika Sillanpaa, describing the experimental setup.

Eliminating all forms of noise is crucial for the experiments, which is why they have to be conducted at extremely low temperatures near absolute zero, at -273 C. Remarkably, the experimental approach allows the unusual state of entanglement to persist for long periods of time, in this case up to half an hour.

'These measurements are challenging but extremely fascinating. In the future, we will attempt to teleport the mechanical vibrations. In quantum teleportation, properties of physical bodies can be transmitted across arbitrary distances using the channel of "spooky action at a distance",' explains Dr. Caspar Ockeloen-Korppi, the lead author on the work, who also performed the measurements.

The results demonstrate that it is now possible to have control over large mechanical objects in which exotic quantum states can be generated and stabilized. Not only does this achievement open doors for new kinds of quantum technologies and sensors, it can also enable studies of fundamental physics in, for example, the poorly understood interplay of gravity and quantum mechanics.

Research Report: 'Stabilized entanglement of massive mechanical oscillators'


Related Links
Aalto University
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Freeing electrons to better trap them
Geneva, Switzerland (SPX) Apr 22, 2018
Atoms are composed of electrons moving around a central nucleus they are bound to. The electrons can also be torn away, overcoming the confining force of their nucleus, using the powerful electric field of a laser. Half a century ago, the theorist Walter Henneberger wondered if it was possible to free an electron from its atom with the laser field, but still make it stay around the nucleus. Many scientists considered this hypothesis to be impossible. However, it was recently successfully confirmed ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
India, France Join Hands for Ambitious Inter-Planetary Missions

China strengthens international space cooperation

New research seeks to optimize space travel efficiency

US Senate narrowly confirms Trump's new NASA chief

TIME AND SPACE
Arianespace to launch BSAT-4b; marking the 10th satellite launch for B-SAT

US Air Force awards nearly $1 bn for hypersonic missile

New DARPA Challenge Seeks Flexible and Responsive Launch Solutions

Lockheed awarded $928M for hypersonic strike weapon

TIME AND SPACE
SwRI's Martian moons model indicates formation following large impact

Clear as mud: Desiccation cracks help reveal the shape of water on Mars

US, Russia likely to go to Mars Together, former NASA astronaut says

NASA scientist to discuss 'Swimming in Martian Lakes: Curiosity at Gale Crater'

TIME AND SPACE
The Long Game: China Seeks to Transfer Its Silk Industry to Far Side of the Moon

China to launch Long March-5 Y3 rocket in late 2018

Flowers on the Moon? China's Chang'e-4 to launch lunar spring

China's 'space dream': A Long March to the moon

TIME AND SPACE
Airbus has shipped SES-12 highly innovative satellite to launch base

Storm hunter launched to International Space Station

SpaceX says Iridium satellite payload deployed

Spacecom selects SSL to build AMOS-8 comsat with advanced capabilities

TIME AND SPACE
Rare earth magnet recycling is a grind - this new process takes a simpler approach

KAIST succeeds in producing 50x more stable adsorbent

Polymer synthesis gets a jolt of caffeine

World's oldest insect inspires a new generation of aerogels

TIME AND SPACE
Are we alone? NASA's new planet hunter aims to find out

We think we're the first advanced earthlings - but how do we really know?

Newly discovered salty subglacial lakes could help search for life in solar system

SPHERE Reveals Fascinating Zoo of Discs Around Young Stars

TIME AND SPACE
Pluto's Largest Moon, Charon, Gets Its First Official Feature Names

Pluto's largest moon, Charon, gets its first official feature names

Juno Provides Infrared Tour of Jupiter's North Pole

SSL to provide of critical capabilities for Europa Flyby Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.