. 24/7 Space News .
CARBON WORLDS
Earthquakes as a driver for the deep-ocean carbon cycle
by Staff Writers
Zurich, Switzerland (SPX) Jan 11, 2018


Michael Strasser (right), then assistant professor at ETH Zurich, and expedition head Gerold Wefer, professor at MARUM and Bremen University, make recommendations about the core sample on board the RV Sonne. Source/Copyright: V. Diekamp, MARUM, Bremen University

In a paper recently published in Nature Communications, geologist Michael Strasser presented the initial findings of a month-long research expedition off the coast of Japan. The research initiative had been organised in March 2012 by MARUM - Center for Marine Environmental Sciences. Strasser, who until 2015 was Assistant Professor for Sediment Dynamics at ETH Zurich and is now a Full Professor for Sediment Geology at the University of Innsbruck, took an international team there to study dynamic sediment remobilisation processes triggered by seismic activity.

At a depth of 7,542 metres below sea level, the team took a core sample from the Japan Trench, an 800-km-long oceanic trench in the northwestern part of the Pacific Ocean. The trench, which is seismically active, was the epicentre of the Tohoku earthquake in 2011, which made headlines when it caused the nuclear meltdown at Fukushima.

Such earthquakes wash enormous amounts of organic matter from the shallows down into deeper waters. The resulting sediment layers can thus be used later to glean information about the history of earthquakes and the carbon cycle in the deep ocean.

New dating methods in the deep ocean
The current study provided the researchers with a breakthrough. They analysed the carbon-rich sediments using radiocarbon dating. This method - measuring the amount of organic carbon as well as radioactive carbon (14C) in mineralised compounds - has long been a means of determining the age of individual sediment layers.

Until now, however, it has not been possible to analyse samples from deeper than 5,000 metres below the surface, because the mineralised compounds dissolve under increased water pressure.

Strasser and his team therefore had to use new methods for their analysis. One of these was what is known as the online gas radiocarbon method, developed by ETH doctoral student Rui Bao and the Biogeoscience Group at ETH Zurich. This greatly increases efficiency, since it takes just a single core sample to make more than one hundred 14C age measurements directly on the organic matter contained within the sediment.

In addition, the researchers applied the Ramped PyrOx measurement method (pyrolysis) for the first time in the dating of deep-ocean sediment layers. This was done in cooperation with the Woods Hole Oceanographic Institute (U.S.), which developed the method.

The process involves burning organic matter at different temperatures. Because older organic matter contains stronger chemical bonds, it requires higher temperatures to burn. What makes this method novel is that the relative age variation of the individual temperature fractions between two samples very precisely distinguishes the age difference between sediment levels in the deep sea.

Dating earthquakes to increase forecast accuracy
Thanks to these two innovative methods, the researchers could determine the relative age of organic matter in individual sediment layers with a high degree of precision. The core sample they tested contained older organic matter in three places, as well as higher rates of carbon export to the deep ocean.

These places correspond to three historically documented yet hitherto imprecisely dated seismic events in the Japan Trench: the Tohoku earthquake in 2011, an unnamed earthquake in 1454, and the Sanriku earthquake in 869.

At the moment, Strasser is working on a large-scale geological map of the origin and frequency of sediments in deep-ocean trenches. To do so, he is analysing multiple core samples taken during a follow-up expedition to the Japan Trench in 2016.

"The identification and dating of tectonically triggered sediment deposits is also important for future forecasts about the likelihood of earthquakes," Strasser says.

"With our new methods, we can predict the recurrence of earthquakes with much more accuracy."

Research paper

CARBON WORLDS
A biological solution to carbon capture and recycling?
Dundee UK (SPX) Jan 09, 2018
Scientists at the University of Dundee have discovered that E. coli bacteria could hold the key to an efficient method of capturing and storing or recycling carbon dioxide. Cutting carbon dioxide (CO2) emissions to slow down and even reverse global warming has been posited as humankind's greatest challenge. It is a goal that is subject to considerable political and societal hurdles, but it ... read more

Related Links
ETH Zurich
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Tech a new religion at consumer gadget extravaganza

Space 2018: Missions and launches to look for in the new year

Race for 'smart' hits fever pitch at electronics show

JPL sketches out a trip to the Alpha Centauri system in 2069

CARBON WORLDS
China tests new ballistic missiles with hypersonic glide vehicles

One Small Step: Massive Stratolaunch Aircraft Conducts First Taxi Tests

Space Launch System solid rocket booster avionics complete key testing

Japan launches H-IIA carrier rocket with 2 satellites

CARBON WORLDS
Opportunity takes extensive imagery to decide where to go next

Mars: Not as dry as it seems

Mars' surface water - the truth is out there

Thirsty rocks may contain the missing water of Mars

CARBON WORLDS
China's Kuaizhou-11 rocket scheduled to launch in first half of 2018

Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

CARBON WORLDS
Nationwide search begins for young space entrepreneurs

Russia restores contact with Angolan satellite

Fourth set of Iridium NEXT satellites arrive in orbit and provide telemetry

SpaceX launches 10 more satellites for Iridium

CARBON WORLDS
Bio-based compound offers a greener carbon fiber alternative

Nature's smallest rainbows, created by peacock spiders, may inspire new optical technology

Accelerated analysis of the stability of complex alloys

Russian scientists suggested a new technology for creating magnet micro-structures

CARBON WORLDS
Discovering the structure of RNA

Which came first: Complex life or high atmospheric oxygen?

Scientists directly observe living bacteria in polar ice and snow

Harvard Astronomer Gives Pointers on Searching for Space Aliens

CARBON WORLDS
Study explains why Jupiter's jet stream reverses course on a predictable schedule

New Horizons Corrects Its Course in the Kuiper Belt

Does New Horizons' Next Target Have a Moon?

Juno probes the depths of Jupiter's Great Red Spot









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.