. 24/7 Space News .
EARLY EARTH
Early Earth's air weighed less than half of today's atmosphere
by Staff Writers
Seattle WA (SPX) May 11, 2016


The layers on this 2.7 billion-year-old rock, a stromatolite from Western Australia, show evidence of single-celled, photosynthetic life on the shore of a large lake. Thea new result suggests that this microbial life thrived despite a thin atmosphere. Image courtesy Roger Buick and University of Washington. For a larger version of this image please go here.

The idea that the young Earth had a thicker atmosphere turns out to be wrong. New research from the University of Washington uses bubbles trapped in 2.7 billion-year-old rocks to show that air at that time exerted at most half the pressure of today's atmosphere.

The results, published online May 9 in Nature Geoscience, reverse the commonly accepted idea that the early Earth had a thicker atmosphere to compensate for weaker sunlight. The finding also has implications for which gases were in that atmosphere, and how biology and climate worked on the early planet.

"For the longest time, people have been thinking the atmospheric pressure might have been higher back then, because the sun was fainter," said lead author Sanjoy Som, who did the work as part of his UW doctorate in Earth and space sciences. "Our result is the opposite of what we were expecting."

The idea of using bubbles trapped in cooling lava as a "paleobarometer" to determine the weight of air in our planet's youth occurred decades ago to co-author Roger Buick, a UW professor of Earth and space sciences. Others had used the technique to measure the elevation of lavas a few million years old. To flip the idea and measure air pressure farther back in time, researchers needed a site where truly ancient lava had undisputedly formed at sea level.

Their field site in Western Australia was discovered by co-author Tim Blake of the University of Western Australia. There, the Beasley River has exposed 2.7 billion-year-old basalt lava. The lowest lava flow has "lava toes" that burrow into glassy shards, proving that molten lava plunged into seawater. The team drilled into the overlying lava flows to examine the size of the bubbles.

A stream of molten rock quickly cools from top and bottom, and bubbles trapped at the bottom are smaller than those at the top. The size difference records the air pressure pushing down on the lava as it cooled, 2.7 billion years ago.

Rough measurements in the field suggested a surprisingly lightweight atmosphere. More rigorous x-ray scans from several lava flows confirmed the result: The bubbles indicate that the atmospheric pressure at that time was less than half of today's.

Earth 2.7 billion years ago was home only to single-celled microbes, sunlight was about one-fifth weaker, and the atmosphere contained no oxygen. But this finding points to conditions being even more otherworldly than previously thought. A lighter atmosphere could affect wind strength and other climate patterns, and would even alter the boiling point of liquids.

"We're still coming to grips with the magnitude of this," Buick said. "It's going to take us a while to digest all the possible consequences." Other geological evidence clearly shows liquid water on Earth at that time, so the early atmosphere must have contained more heat-trapping greenhouse gases, like methane and carbon dioxide, and less nitrogen.

The new study is an advance on the UW team's previous work on "fossilized raindrops" that first cast doubt on the idea of a far thicker ancient atmosphere. The result also reinforces Buick's 2015 finding that microbes were pulling nitrogen out of Earth's atmosphere some 3 billion years ago.

"The levels of nitrogen gas have varied through Earth's history, at least in Earth's early history, in ways that people just haven't even thought of before," said co-author David Catling, a UW professor of Earth and space sciences. "People will need to rewrite the textbooks."

The researchers will next look for other suitable rocks to confirm the findings and learn how atmospheric pressure might have varied through time.

While clues to the early Earth are scarce, it is still easier to study than planets outside our solar system, so this will help understand possible conditions and life on other planets where atmospheres might be thin and oxygen-free, like that of the early Earth.

Som is CEO of Seattle-based Blue Marble Space, a nonprofit that focuses on interdisciplinary space science research, international awareness, science education and public outreach. He currently does astrobiology research at NASA's Ames Research Center in California.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Washington
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARLY EARTH
New evidence connects dung beetle evolution to dinosaurs
Cleveland OH (SPX) May 09, 2016
Researchers have found an evolutionary connection between dinosaurs and dung beetles. An international team of scientists uncovered the first molecular evidence indicating that dung beetles evolved in association with dinosaurs. The findings place the origin of dung beetles (Scarabaeidae: Scarabaeinae) in the Lower Cretaceous period, with the first major diversification occurring in the middle o ... read more


EARLY EARTH
NASA research gives new insights into how the Moon got inked

First rocket made ready for launch at Vostochny spaceport

Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

EARLY EARTH
Flying observatory detects atomic oxygen in Martian atmosphere

Clues about Volcanoes Under Ice on Ancient Mars

Second ExoMars mission moves to next launch opportunity in 2020

Although Boiling, Water Does Shape Martian Terrain

EARLY EARTH
No more space race for US, rivalry gives way to collaboration

NASA Awards Contract for Aeronautics, Exploration Modeling, Simulation

Michael Watkins Named Next JPL Director

US to move more assets into deep space over next 4 years

EARLY EARTH
Long March-7 rocket delivered to launch site

China's space technology extraordinary, impressive says Euro Space Center director

China can meet Chile's satellite needs: ambassador

China launches Kunpeng-1B sounding rocket

EARLY EARTH
NASA, Space Station partners announce future mission crew members

New landing date for ESA astronaut Tim Peake

Tim Peake goes roving

Russia delays space crew's return to Earth

EARLY EARTH
SpaceX lands rocket's first stage after space launch

SpaceX successfully lands rockets first stage after space launch

Agreement Signed for Airbus Safran Launchers

SpaceX to launch Japanese satellite early Friday

EARLY EARTH
Scientists discover potentially habitable planets

MIT compiles list of potential gases to guide search for life on exoplanets

Three potentially habitable worlds found around nearby ultracool dwarf star

Light Echoes Give Clues to Protoplanetary Disk

EARLY EARTH
Accelerating complex computer simulations: thinking beyond ones and zeros

Airbus Defence and Space to lead TeSeR, next EU project to clean up space

Army investigating new materials for explosive, propellant use

Engineers create a better way to boil water









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.