24/7 Space News  





. Dwarf Galaxies Need Dark Matter Too

Dark matter is a substance astronomers have not directly observed, but they deduce it exists because they detect its gravitational effects on visible matter.
by Staff Writers
Ann Arbor MI (SPX) Oct 25, 2007
Stars in dwarf spheroidal galaxies behave in a way that suggests the galaxies are utterly dominated by dark matter, University of Michigan astronomers have found. Astronomy professor Mario Mateo and post-doctoral researcher Matthew Walker measured the velocity of 6,804 stars in seven dwarf satellite galaxies of the Milky Way: Carina, Draco, Fornax, Leo I, Leo II, Sculptor and Sextans. They found that, contrary to what Newton's law of gravity predicts, stars in these galaxies do not move slower the farther they are from their galaxy's core.

"These galaxies show a problem right from the center," Mateo said. "The velocity doesn't get smaller. It just stays the same, which is eerie."

Astronomers already know stars in spiral galaxies behave in a similar way. This research dramatically increases the available information about smaller galaxies, making it possible to confirm that the distribution of light and stars in them is not the same as the distribution of mass.

"We have more than doubled the amount of data having to do with these galaxies, and that allows us to study them in an unprecedented manner. Our research shows that dwarf galaxies are utterly dominated by dark matter, so long as Newtonian gravity adequately describes these systems," Walker said. Walker received his doctorate from U-M earlier this year and currently has a post-doctoral position at the University of Cambridge in the United Kingdom.

Dark matter is a substance astronomers have not directly observed, but they deduce it exists because they detect its gravitational effects on visible matter. Based on these measurements, the prevailing theory in astronomy and cosmology is that the visible parts of the universe make up only a fraction of its total matter and energy.

The planet Neptune was once "dark matter," Mateo said. Before the term was even coined, astronomers predicted its existence based on an anomaly in the orbit of Neptune's neighbor Uranus. They knew just where to look for Neptune.

For the past quarter century, astronomers have been looking for the Neptune of the universe, so to speak. Dark matter could take the form of dwarf stars and planets, elementary particles including neutrinos, or hypothetical and as-yet undetected particles that don't interact with visible light or other parts of the electromagnetic spectrum.

Dark matter is believed to hold galaxies together. The gravitational force of the visible matter is not considered strong enough to prevent stars from escaping. Other theories exist to explain these discrepancies, though. For example, Modified Newtonian Dynamics, Mateo said, proposes that gravitational forces become stronger when accelerations are very weak. While their results align with current dark matter models, Mateo and Walker say they also bolster this less-popular explanation.

"These dwarf galaxies are not much to look at," Mateo continued, "but they may really alter our fundamental views on the nature of dark matter and, perhaps, even gravity."

Walker will present a paper on these findings on Oct. 30 at the Magellan Science Meeting in Cambridge, Mass. The paper he will present is Velocity Dispersion Profiles of Seven Dwarf Spheroidal Galaxies. It was published in the Sept. 20 edition of Astrophysical Journal Letters.

Community
Email This Article
Comment On This Article

Related Links
University of Michigan
Stellar Chemistry, The Universe And All Within It




Tempur-Pedic Mattress Comparison

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


hello world
To Catch A Galactic Thief
Pasadena CA (JPL) Oct 23, 2007
On Earth, thieves steal everything from diamonds to art to bags full of money. In space, gas - fuel for making stars - is a commodity worth the price of theft. New observations from NASA's Spitzer Space Telescope reveal a distant, massive galaxy in the act of ripping off vast reservoirs of gas - the equivalent of one billion suns - from its smaller, neighbor galaxy. The stolen gas, which has become scorching hot during the heist, will likely cool down and get turned into new stars and planets.

.
Get Our Free Newsletters Via Email
  



  • For the first time, women rule in space
  • 'Malaysian Gagarin' eyes return to space
  • Broccoli Sprout-Derived Extract Protects Against Ultraviolet Radiation
  • Soyuz Returns Once Again

  • UA's Phoenix Mars Mission Gets A Chance To Lounge
  • Hawaii Reveals Steamy Martian Underground
  • Hummocky And Shallow Maunder Crater
  • NASA extends Mars probes' mission for 5th time

  • Ariane 5 arrives In French Guiana For Arianespace's Sixth Mission Of 2007
  • ILS Proton Launch Scheduled In November For SES SIRIUS 4 Satellite
  • Successful Ariane 5 Upper Stage Engine Re-Ignition Experiment
  • ATK Propulsion And Composite Technologies Help Launch GPS Satellite

  • NASA Views Southern California Fires And Winds
  • A Roadmap For Calibration And Validation
  • GeoEye Contract With ITT Begins Phased Procurement Of The GeoEye-2 Satellite
  • Key Found To Moonlight Romance

  • Goddard Instrument Makes Cover Of Science
  • Checking Out New Horizons
  • Pluto-Bound New Horizons Sees Changes In Jupiter System
  • Maneuver Puts New Horizons On A Straight Path To Pluto

  • Dwarf Galaxies Need Dark Matter Too
  • To Catch A Galactic Thief
  • The Fantastic Skies Of Orphan Stars
  • The Fantastic Skies Of Orphan Stars

  • China's Lunar Orbiter, The Story Behind "Moon Lady" Chang'e
  • NASA Offers 2 Million Dollar Lunar Lander Competition Prize
  • China Counting Down To Launch Of Lunar Probe
  • China Likely To Launch First Moon Orbiter At 6pm On Oct 24th

  • EU's Galileo satnav scheme needs millions more next year: MEPs
  • Another GPS Satellite Successfully Launched
  • Science And Galileo - Working Together
  • Modernized GPS Built By Lockheed Martin Ready For Launch From Cape Canaveral

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement