. 24/7 Space News .
TECH SPACE
Dressing a metal in various colors
by Staff Writers
Seoul, South Korea (SPX) Jan 18, 2017


Fig. 1 (a) Calculated refractive index and (b) extinction coefficient spectra of Ge with four different porosities (Pr) (0%, 40%, 60% and 75%) as a function of wavelength. (c) Left, schematic view of proposed thin-film coatings with different Pr (i.e. 0%, 40%, 60% and 75%). Right, thin-film structures represented by calculated colors with different Pr (i.e. 0%, 40%, 60% and 75%) at the same thickness of 20 nm. (d) Calculated reflectance spectra of ultra-thin optical coatings (Pr-Ge/Au) with different Pr. (e) Contour plot of reflectance variation for Pr-Ge/Au with four different Pr as a function of Ge thickness (tGe), and of wavelength. White dashed lines in each contour plot indicate variations in the resonance dip. (f ) Color representations from calculated reflectance in (e). Image courtesy DGIST.

DGIST announced that Professor Kyung-in Jang's research team succeeded in developing a technology that can control various color changes by coating several nanometers of semiconducting materials on a metal substrate through joint research with a research team led by professor Young-min Song of GIST.

Professor Kyung-in Jang's research team has succeeded in changing the unique color of metals such as gold, silver, aluminum, etc. with strong thin-film interference effect caused by light reflected on the surface of the metals and semiconducting materials by coating an ultra-thin layer of several nanometers (1 nanometer is one one-billionth of a meter) of semiconductor substances on the metals.

There have been previous studies that show that color changes depend on the thickness of ultra-thin film of semiconducting materials such as germanium coated on a gold substrate; however, there have been some difficulties due to the rapid change of colors and with color darkening techniques.

The research team coated a thin germanium film of 5 to 25 nanometers on a gold substrate by utilizing oblique angle deposition (OAD). As a result, they succeeded in producing various colors such as yellow, orange, blue, and purple at will according to the thickness and deposition angle of the germanium coating.

It was confirmed that the range of color expression expanded and the purity of color was enhanced by making a porous structure with a large number of fine holes that have a significant presence in the germanium layer. By applying the oblique angle deposition method, the variation and purity of colors were also varied according to the thickness change of the germanium film in nanometers.

Professor Kyung-in Jang from DGIST's Department of Robotics Engineering said, "The result of this research is the development of a simple method of applying various colors to existing electronic devices and currently we have succeeded in expressing single colors, but we may also be able to coat patterns such as symbols and pictures.

"In the future, I think it can be used in coating visual designs on flexible devices such as solar cells, wearable devices, and displays that are used for various purposes including building exterior walls. It can also be applied in camouflage by coating things with the same pattern or color as the surrounding objects."

Meanwhile, this research outcome was published on December 9, 2016 in the online edition of Nanoscale, an international academic journal in the field of nanotechnology, and the research was supported by the basic research project (collective research) of the National Research Foundation of Korea. Kyung-In Jang, Young-Min Song, et. al., "Ultra-thin Films with Highly Absorbent Porous Media Fine-tunable for Coloration and Enhanced Color Purity," Nanoscale 2016.

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Daegu Gyeongbuk Institute of Science and Technology
Space Technology News - Applications and Research






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Strength of hair inspires new materials for body armor
San Diego CA (SPX) Jan 18, 2017
In a new study, researchers at the University of California San Diego investigate why hair is incredibly strong and resistant to breaking. The findings could lead to the development of new materials for body armor and help cosmetic manufacturers create better hair care products. Hair has a strength to weight ratio comparable to steel. It can be stretched up to one and a half times its orig ... read more


TECH SPACE
French, US astronauts install batteries outside space station

NASA to rely on Soyuz for ISS missions until 2019

'Hidden Figures' soars in second week atop box office

Lomonosov Moscow State University to Launch 'Space Department' in 2017

TECH SPACE
When One launch is not enough: SpaceX Return To Flight

2017 Rocket Campaign Begins in Alaska

Ruptured oxidant tank likely cause of Progress accident

Next Cygnus Mission to Station Set for March

TECH SPACE
Mars Rover Curiosity Examines Possible Mud Cracks

Opportunity Continues Its Journey South Along Crater Rim

New Year yields interesting bright soil for Opportunity rover

HI-SEAS Mission V crew preparing to enter Mars simulation habitat

TECH SPACE
China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

China Space Plan to Develop "Strength and Size"

Beijing's space program soars in 2016

TECH SPACE
Shaping the Future: Aerospace Works to Ensure an Informed Space Policy

Iridium-1 NEXT Launched on a Falcon 9

Russia-China Joint Space Studies Center May Be Created in Southeastern Russia

EchoStar 19 positioned in orbital slot

TECH SPACE
China's quantum communication satellite delivered for use

U.S. Army taps Leidos for training and simulation equipment

Thales supplying Crowsnest radar system to Royal Navy

Swiss air force upgrading surveillance radars

TECH SPACE
SF State astronomer searches for signs of life on Wolf 1061 exoplanet

Looking for life in all the right places with the right tool

Could dark streaks in Venusian clouds be microbial life

VLT to Search for Planets in Alpha Centauri System

TECH SPACE
Public to Choose Jupiter Picture Sites for NASA Juno

Pluto Global Color Map

Lowell Observatory to renovate Pluto discovery telescope

Flying observatory makes observations of Jupiter previously only possible from space









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.