Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















TECH SPACE
Dormant, Yet Always-Alert Sensor Awakes Only in the Presence of a Signal of Interest
by Staff Writers
Washington DC (SPX) Sep 13, 2017


The micrograph features the multiple, wavelength-specific sensor patches that enable this N-ZERO device to capture infrared signatures of specific heat-emitting sources. Click on image below for high-resolution.

Here's your task. Build a tiny sensor that detects a signature of infrared (IR) wavelengths characteristic of a hot tailpipe, a wood fire, or perhaps even a human being. Design the sensor so that it can remain dormant and unattended but always alert, even for years, without drawing on battery power. And build the sensor so that the act of detection itself can initiate the emission of a signal that alerts warfighters, firefighters, or others that a "signal-of-interest" has been detected.

It's just the sort of intelligence, reconnaissance, and surveillance (ISR) technology that can increase situational awareness while minimizing the need for potentially dangerous maintenance missions to replace run-down batteries.

Online this week in the journal Nature Nanotechnology, a research team at Northeastern University, led by Electrical and Computer Engineering Associate Professor Matteo Rinaldi, reports pulling off this tall order of DARPA's Near Zero Power RF and Sensor Operation (N-ZERO) program with a device the Boston team refers to as a "plasmonically-enhanced micromechanical photoswitch."

"What is really interesting about the Northeastern IR sensor technology is that, unlike conventional sensors, it consumes zero stand-by power when the IR wavelengths to be detected are not present," said Troy Olsson, manager of the N-ZERO Program in DARPA's Microsystems Technology Office.

"When those IR wavelengths are present and impinge on the Northeastern team's IR sensor, the energy from the IR source heats the sensing elements which, in turn, causes physical movement of key sensor components. These motions result in the mechanical closing of otherwise open circuit elements, thereby leading to signals that the target IR signature has been detected."

The sensor is a showcase of clever physics and engineering, including a grid of nanoscale patches whose specific dimensions limit them to absorb only particular IR wavelengths.

"The charge-based excitations, called plasmons (that can be thought of somewhat like ripples on the surface of water), are highly localized below the nanoscale patches and effectively trap specific wavelengths of light into the ultra-thin structure, inducing a relatively large and swift spike in its temperature," Rinaldi explained.

These temperature spikes, in turn, lead to an upstream sequence of events that culminates in circuit-completing deformations of other parts of the sensor.

"The technology features multiple sensing elements-each tuned to absorb a specific IR wavelength," Olsson noted. "Together, these combine into complex logic circuits capable of analyzing IR spectrums, which opens the way for these sensors to not only detect IR energy in the environment but to specify if that energy derives from a fire, vehicle, person or some other IR source."

Consider the identification of vehicles from their IR emissions. Engines that burn gasoline or diesel fuels emit specific compounds in their exhaust gases. Among these compounds are CO2, CO, H2O, various oxides of nitrogen and sulfur (NOx and SOx, respectively), and hydrocarbons such as methane.

"As a result, the infrared emission spectra of the heated tailpipe gases coming out of vehicles such as trucks, cars or aircraft can by themselves act as a signature specific to a vehicle type," explained Zhenyun Qian, who has been working with Rinaldi and other research team members on the N-ZERO program.

A primary goal of the N-ZERO program is to develop fundamental technologies that open the way to new and more capable sensor systems relevant to national security. The NU team points out in its Nature Nanotechnology paper that the same technology could become important over the coming years as the Internet of Things expands to include hundreds of billions of devices, ranging from cars, to appliances, to remotely deployed sensors.

"The capability of consuming power only when useful information is present will result in nearly unlimited duration of operation for unattended sensors deployed to detect infrequent but time-critical events, with a groundbreaking impact on the proliferation of the Internet of Things," the Northeastern researchers predict in their paper.

The paper, "Zero Power Infrared Digitizers Based on Plasmonically-enhanced Micromechanical Photoswitches," was posted online on Nature Nanotechnology web site.

TECH SPACE
Lockheed receives contract for Marine Corps AN/TPS-59A(V)3 radars
Washington (UPI) Aug 28, 2017
Lockheed Martin is receiving a $25.2 million contract for for upgrades to the AN/TPS-59A(V)3 long-range radar system for the U.S. Marine Corps. The contract includes options that, if invoked, could potentially raise the value of the contract to $46.7 million. The work will take place at Lockheed Martin's Syracuse, N.Y., plant and is expected to be completed by Jan. 31, 2021. The ... read more

Related Links
Defense Advanced Research Projects Agency
Space Technology News - Applications and Research

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Diet tracker in space

Three astronauts blast off for five-month ISS mission

Crewed Missions Beyond LEO

Voyager Spacecraft: 40 Years of Solar System Discoveries

TECH SPACE
SLS Core Stage Simulator Will Pave Way for Mission Success

Arianespace announces a new contract, bringing its order book to 53 launches across three rockets

EUMETSAT signs with Arianespace for first Metop-SG satellite launch

MHI to launch first Inmarsat-6 satellite

TECH SPACE
45 Kilometers on the Odometry for Opportunity

New tools for exploring the surface of Mars

NASA's Curiosity Mars Rover Climbing Toward Ridge Top

New Gravity Map Suggests Mars Has a Porous Crust

TECH SPACE
Spacecraft passes docking test

China, Russia to Have Smooth Space Cooperation, Says Expert

Kuaizhou-11 to send six satellites into space

Russia, China May Sign 5-Year Agreement on Joint Space Exploration

TECH SPACE
India, Japan Set to Boost Space Cooperation

Bids for government funding prove strong interest in LaunchUK

Blue Sky Network Reaffirms Commitment to Brazilian Market

India to Launch Exclusive Satellite for Afghanistan

TECH SPACE
Dormant, Yet Always-Alert Sensor Awakes Only in the Presence of a Signal of Interest

Air Force activates new satellites for tracking space objects

'Peel-and-go' printable structures fold themselves

Ultrathin spacecraft will collect, deposit orbital debris

TECH SPACE
Hubble observes pitch black planet

The return of the comet-like exoplanet

Does the Organic Material of Comets Predate our Solar System?

X-rays Reveal Temperament of Possible Planet-hosting Stars

TECH SPACE
Hibernation Over, New Horizons Continues Kuiper Belt Cruise

Pluto features given first official names

Jupiter's Auroras Present a Powerful Mystery

New Horizons Files Flight Plan for 2019 Flyby




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement