. 24/7 Space News .
EXO WORLDS
Do you know where your xenon is?
by Staff Writers
Washington DC (SPX) Mar 02, 2018

illustration only

The paradox of the missing xenon might sound like the title of the latest airport thriller, but it's actually a problem that's stumped geophysicists for decades. New work from an international team including Carnegie's Alexander Goncharov and Hanyu Liu, and Carnegie alumni Elissaios Stavrou and Sergey Lobanov, is chasing down the solution to this longstanding puzzle.

The mystery stems from meteorites, which retain a record of our Solar System's earliest days. One type, called carbonaceous chondrites, contain some of the most-primitive known samples of Solar System material, including a lot more xenon than is found in our own planet's atmosphere.

"Xenon is one of a family of seven elements called the noble gases, some of which, such as helium and neon, are household names," said lead author Stavrou, now at Lawrence Livermore National Laboratory, about the team's paper in Physical Review Letters. "Their name comes from a kind of chemical aloofness; they normally do not combine, or react, with other elements."

Because xenon doesn't play well with others, it's deficiency in Earth's atmosphere - even in comparison to other, lighter noble gases, like krypton and argon, which theoretical predictions tell us should be even more depleted than xenon - is difficult to explain.

That doesn't mean many haven't tried.

This research team - which also included Yansun Yao of the University of Saskatchewan, Joseph Zaug also of LLNL, and Eran Greenberg, and Vitali Prakapenka of the University of Chicago - focused their attention on the idea that the missing xenon might be found deep inside the Earth, specifically hidden in compounds with nickel and, especially, iron, which forms most of the planet's core.

It's been known for a while that although xenon doesn't form compounds under ambient conditions, under the extreme temperatures and pressures of planetary interiors it isn't quite so aloof.

"When xenon is squashed by extreme pressures, its chemical properties are altered, allowing it to form compounds with other elements," Lobanov explained.

Using a laser-heated diamond anvil cell, the researchers mimicked the conditions found in the Earth's core and employed advanced spectroscopic tools to observe how xenon interacted with both nickel and iron.

They found that xenon and nickel formed XeNi3 under nearly 1.5 million times normal atmospheric pressure (150 gigapascals) and at temperatures of above about 1,200 degrees Celsius (1,500 kelvin). Furthermore, at nearly 2 million times normal atmospheric pressure (200 gigapascals) and at temperatures above about degrees 1,700 degrees Celsius (2000 kelvin), they synthesized complex XeFe3 compounds.

"Our study provides the first experimental evidence of previously theorized compounds of iron and xenon existing under the conditions found in the Earth's core," Goncharov said. "However, it is unlikely that such compounds could have been made early in Earth's history, while the core was still forming, and the pressures of the planet's interior were not as great as they are now."

The researchers are investigating whether a two-stage formation process could have trapped xenon in Earth's early mantle and then later incorporated it into XeFe3 when the core separated and the pressure increased. But more work remains to be done.

Research paper


Related Links
Carnegie Institution for Science
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Hubble observes exoplanet atmosphere in more detail than ever before
Munich, Germany (SPX) Mar 02, 2018
An international team of scientists has used the NASA/ESA Hubble Space Telescope to study the atmosphere of the hot exoplanet WASP-39b. By combining this new data with older data they created the most complete study yet of an exoplanet atmosphere. The atmospheric composition of WASP-39b hints that the formation processes of exoplanets can be very different from those of our own Solar System giants. Investigating exoplanet atmospheres can provide new insight into how and where planets form around a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Knowledge matters for Year of Education on Station

Jemison: 'If you want a seat at the table, you can have one'

Aerospace introduces new Senior Advisory Council for space policy

Cosmonaut, two US astronauts return to Earth from ISS

EXO WORLDS
Arianespace Soyuz set to launch 4 more sats for SES O3b constellation

SLS Intertank loaded for shipment, structural testing

Space-X lobs Spanish military satellite into orbit

Millenium tapped for certification of Vulcan space launch systems

EXO WORLDS
Dyes for 'live' extremophile labeling will help discover life on Mars

Mars Express views moons set against Saturn's rings

Curiosity tests a new way to drill on Mars

NASA InSight mission to Mars arrives at launch site

EXO WORLDS
China plans rocket sea-launch

China speeds up research, commercialization of space shuttles

Long March rockets on ambitious mission in 2018

Chinese taikonauts maintain indomitable spirit in space exploration: senior officer

EXO WORLDS
ESA incubators ranked among world's best

Lockheed Martin Completes Foundation for Satellite Factory of the Future

Lockheed Martin Completes Assembly on Arabsat's Newest Communications Satellite

Goonhilly goes deep space

EXO WORLDS
Latest updates from NASA on IMAGE Recovery

Radioactive cylinder found on Lebanon coast: authority

Researchers demonstrate promising method for improving quantum information processing

Silk fibers could be high-tech 'natural metamaterials'

EXO WORLDS
Tesla in space could carry bacteria from Earth

NASA finds a large amount of water in an exoplanet's atmosphere

Hubble observes exoplanet atmosphere in more detail than ever before

When two species become one: New study examines 'speciation reversal'

EXO WORLDS
The PI's Perspective: Why Didn't Voyager Explore the Kuiper Belt?

Chasing a stellar flash with assistance from GAIA

New Horizons captures record-breaking images in the Kuiper Belt

Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.