Subscribe free to our newsletters via your
. 24/7 Space News .




WATER WORLD
Diverse coral communities persist in Palau's low-pH waters
by Staff Writers
Woods Hole MA (SPX) Jun 11, 2015


Coral reef communities under low-pH conditions in Palau are diverse and characterized by high coral cover. Image courtesy Hannah Barkley and Woods Hole Oceanographic Institution.

As the ocean absorbs atmospheric carbon dioxide (CO2) released by the burning of fossil fuels, its chemistry is changing. The CO2 reacts with water molecules, lowering the ocean's pH in a process known as ocean acidification. This process also removes carbonate ions, an essential ingredient needed by corals and other organisms to build their skeletons and shells.

Will some corals be able to adapt to these rapidly changing conditions? If so, what will these coral reefs look like as the oceans become more acidic?

In addition to laboratory experiments that simulate future ocean conditions, scientists are studying coral reefs in areas of the ocean where low pH is naturally occurring to try and answer important questions about ocean acidification, which threatens coral reef ecosystems worldwide.

One such place is Palau, an archipelago in the far western Pacific Ocean. The tropical, turquoise waters of the Palau Rock Islands are naturally more acidic due to a combination of biological activity and the long residence time of seawater within its maze of lagoons and inlets. Seawater pH within the Rock Island lagoons is as low now as the open ocean is projected to be as a result of ocean acidification near the end of this century.

A new study led by scientists at Woods Hole Oceanographic Institution (WHOI) found that the coral reefs there seem to be defying the odds, showing none of the predicted responses to low pH except for an increase in bioerosion - the physical breakdown of coral skeletons by boring organisms such as mollusks and worms. The paper is to be published June 5 in the journal Science Advances.

'Based on lab experiments and studies of other naturally low pH reef systems, this is the opposite of what we expected,' says lead author Hannah Barkley, a graduate student in the WHOI-MIT joint program in oceanography.

Experiments measuring corals' responses to a variety of low pH conditions have shown a range of negative impacts, such as fewer varieties of corals, more algae growth, lower rates of calcium carbonate production (growth), and juvenile corals that have difficulty constructing skeletons.

'Surprisingly, in Palau where the pH is lowest, we see a coral community that hosts more species, and has greater coral cover than in the sites where pH is normal,' says Anne Cohen, a co-author on the study and Barkley's advisor at WHOI. 'That's not to say the coral community is thriving because of it, rather it is thriving despite the low pH, and we need to understand how.'

When the research team compared the communities found on Palau's reefs with those in other reefs where pH is naturally low, they found increased bioerosion was the only shared common feature.

'Our study revealed increased bioerosion to be the only consistent community response, as other signs of ecosystem health varied at different locations,' Barkley says.

'This is important because on coral reefs, the balance between calcium carbonate production and removal by bioerosion and dissolution is very tight,' adds Cohen. 'So even if rates of production are not affected by ocean acidification - as we see on Palau - an increase in bioerosion can shift reefs to a state of net calcium carbonate removal, threatening their survival.'

Rapidly changing chemistry
Since the beginning of the Industrial Revolution, ocean pH has fallen by 0.1 pH units, which represents an increase in acidity of approximately 30 percent. For marine life that has evolved over millions of years in relatively stable pH conditions, this kind of rapid change doesn't allow for much time to adapt. By the end of this century, pH levels are projected to be nearly 150 percent more acidic, resulting in a pH that the oceans haven't experienced for more than 20 million years.

There are several sites around the world where CO2 is released by undersea volcanic activity that vents up from the seafloor through the base of the reefs, creating a much lower pH environment than is currently found in the open ocean. These 'natural' laboratories are giving scientists a rare opportunity to examine what is already happening to corals dealing with lower pH levels predicted for the future.

One example is a coral reef system located among the volcanic islands of Papua New Guinea. Here, streams of gas bubbles rise up from the seafloor, lowering the pH of the overlying seawater. Similar low pH conditions are found at vent sites off Japan, freshwater seeps in Mexico, and upwelling areas in regions of the eastern tropical Pacific Ocean.

'The coral reef system at the Papua New Guinea vent site is an algae-dominated one with few species of corals,' says Barkley.

'We see responses much like those shown in many lab experiments at some of the other naturally low pH coral reef sites as well, particularly lower calcium carbonate production. But we don't see the same responses across all of the sites, especially not at the coral reefs in Palau Rock Islands. The coral communities there are thriving, except for higher rates of bioerosion.'

In collaboration with the Palau International Coral Reef Center, members of Cohen's lab have been conducting fieldwork there since 2011. The research team collected water and coral skeletal core samples from eight sites across the Palau reef system, and deployed pH, light, salinity and flow sensors to characterize the seawater environment in which the corals grew. The research team also collected and analyzed data on the community composition as well.

The skeletal cores were scanned at the Computerized Scanning and Imaging Facility at WHOI. The Computerized Axial Tomography technology generates a 3-D image of the cores, revealing detailed information not visible to the naked eye, including coral growth rates, skeletal densities and the extent of bioerosion.

Using an automated program written in Matlab, the team used the 3-D images to quantify the proportion of the coral skeletons that had been eroded by organisms, and the severity of bioerosion of each coral. As the pH of the reef seawater drops, more frequent and severe bioerosion scars were revealed in the coral scans.

'We see coral skeletons that are eaten up and have holes on the top and sides. The coral almost looks like Swiss cheese because of the volume that's been removed,' says Barkley.

Barkley and her colleagues found bioerosion rates in Palau corals increased eleven-fold as pH decreased from the barrier reefs to the Rock Island bays. When comparing those results to other low pH reef sites, a definite pattern emerged.

'All of these naturally low pH sites that Hannah compared are different from one another in terms of physical setting, ecological connectivity, frequencies of variability and so on. What she discovered is that the only common and consistent response to -across all these sites is significantly increased bioerosion,' says Cohen.

'This paper illustrates the value of comprehensive field studies,' adds David Garrison, program director in the National Science Foundation's Division of Ocean Sciences, which funded the research. 'Contrary to laboratory findings, it appears that the major effect of ocean acidification on Palau Rock Island corals is increased bioerosion rather than direct effects on coral species.'

The riddle of resilience
So how do Palau's low pH reefs thrive despite significantly elevated levels of bioerosion? The researchers aren't certain yet, but hope to be able to answer that question in future studies.

They also don't completely understand why conditions created by ocean acidification seem to favor bioeroding organisms. One theory is that skeletons grown under more acidic conditions are less dense making them easier for bioeroding organisms to penetrate coral skeletons. But that is not the case on Palau, Barkley says, 'Because we don't see a correlation between skeletal density and pH on Palau.'

A previous study published January 2015 in the journal Geology by Thomas DeCarlo, a member of Cohen's lab and a co-author on this paper, showed that the influence of pH on bioerosion is exacerbated by high levels of nutrients. That finding implies that local management strategies, such as controlling runoff from land, can help to slow the impact of ocean acidification on coral reef decline.

Increased runoff from areas of intense agriculture and coastal development often carries high levels of nutrients that will interact with decreasing pH to accelerate coral reef decline.

Though coral reefs cover less than one percent of the ocean, these diverse ecosystems are home to at least a quarter of all marine life. In addition to sustaining fisheries that feed hundreds of millions of people around the world, coral reefs protect thousands of acres of coastline from waves, storms, and tsunamis.

'On the one hand, the results of this study are optimistic,' Cohen says.

'Even though many experiments and other studies of naturally low pH reefs show that ocean acidification negatively impacts calcium carbonate production, as well as coral diversity and cover, we are not seeing that on Palau. And that gives us hope that some coral reefs - even if it is a very small percentage - might be able to withstand future levels of ocean acidification. But there's also a cautionary side, even for those coral communities able to maintain their diversity and growth as the oceans become more acidic, increased rates of bioerosion and dissolution seem inescapable.'


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Woods Hole Oceanographic Institution
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Nine Chinese fishermen freed from Philippine jail
Manila (AFP) June 10, 2015
The Philippines has freed nine Chinese fishermen convicted of poaching endangered sea turtles after they completed one-year jail terms, officials said Wednesday. The nine, arrested in disputed waters in May last year, were jailed after they failed to pay fines of $100,000 each for poaching and an additional $2,662 each for catching an endangered species. "They were treated well. They had ... read more


WATER WORLD
Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

China, Russia plan joint landing on the Moon

NASA's LRO Moves Closer to the Lunar Surface

WATER WORLD
Rover Ready for Solar Conjunction and Period of Curtailed Operations

NASA Spacecraft Detects Impact Glass on Surface of Mars

Building a Smarter Rover

Mars Missions to Pause Commanding in June, Due to Sun

WATER WORLD
ESA astronaut Samantha Cristoforetti returning home

Longest US space simulation study coming to an end

NASA 'flying saucer' launch set for Friday

Destination Mars? NASA's Flying Saucer May be the Ticket

WATER WORLD
Electric thruster propels China's interstellar ambitions

China Plans First Ever Landing On The Lunar Far Side

China ranked 4th among world space powers

3D printer making Chinese space suit parts

WATER WORLD
Crewmembers From ISS to Return to Earth June 11

Historic handshake between space and Earth

Astronauts delayed return from ISS set for June 11: Russia

Space Station remodelling

WATER WORLD
Airbus developing reusable space rocket launcher

Angara to launch first manned rocket from Vostochny in 2023

Recent Proton loss to push up launch costs warns manufacturer

Air Force Certifies SpaceX for National Security Space Missions

WATER WORLD
Hubble in 'Oh Planet, What Art Thou?' 25th Anniversary Video

Astronomers discover a young solar system around a nearby star

Astronomers Discover a Young Solar System Around a Nearby Star

Circular orbits identified for small exoplanets

WATER WORLD
Recovering a rare metal from LCDs to avoid depleting key resource

MIT team creates ultracold molecules

How natural channel proteins move in artificial membranes

Researchers simulate behavior of 'active matter'




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.