Subscribe free to our newsletters via your
. 24/7 Space News .




CARBON WORLDS
Diamonds are for temperature
by Staff Writers
Washington DC (SPX) Jun 22, 2015


A schematic representation of the temperature sensing properties of diamond defects. Image courtesy of Homeyer, et al./ Universite de Lyon. For a larger version of this image please go here.

Researchers have developed tiny, diamond-based probes that optically transmit detailed temperature information and can operate in conditions ranging from 150 to 850 degrees Kelvin, representing near-cryogenic cold to slightly below the melting point of aluminum.

Described in the journal Applied Physics Letters, from AIP Publishing, the probes could be used to measure materials' thermal fluctuations to better understand phenomena like friction and thermoelectricity. The probes may also be used to study temperature in biological systems, since diamond is biocompatible, and on a longer timescale, they might replace other sensors used in industry to monitor extreme environments like the inside of engines, combustion chambers, and high voltage systems.

The heart of the probe is a luminescent diamond defect called a Ni-based S3 defect center. It consists of a linear chain of 1 nitrogen atom, a vacancy, one nickel atom, another vacancy, and another nitrogen atom, all embedded in the crystalline structure of diamond.

'Although its structure seems complicated, it is a very common defect of diamond and, in particular, of artificial diamonds, since nickel is widely used as a synthesis precursor,' said Gilles Ledoux, a CNRS (French National Center for Scientific Research) researcher at the Institute of Light and Matter at the University of Lyon in France.

Like the majority of diamond defects, Ni-based S3 defect centers luminesce, meaning they emit light when excited by a laser pulse. The lifetime of the luminescence decreases as the temperature goes up.

What makes the S3 defect special - and uniquely suitable to act as a temperature probe - is its electronic structure, which has two closely spaced excited energy levels with a thousand-fold difference in radiative lifetimes. The difference means the luminescence is strongly sensitive to temperature variation, the researchers said.

The team tested the probes by attaching micro-diamonds with Ni-based S3 defect centers on silicon and inserting them into a cryostat, a piece of equipment that could control the temperature from 77 degrees Kelvin (minus 196 degrees Celsius/ minus 321 degrees Fahrenheit) up to 873 Kelvin (600 degrees Celsius/1,112 degrees Fahrenheit). The best results exhibited an accuracy of better than 1 degree Celsius.

The versatility of the diamond temperature probes, combined with their high performance, sets them apart from other luminescent temperature sensors, the researchers said.

'This sensor combines good sensitivity, fast response speed, a huge range of use, from 150 degrees Kelvin to 850 Kelvin, and a potentially good spatial resolution, only limited by the size of the diamond particles,' said Estelle Homeyer, another member of the research team. 'For each of these criteria one can find a slightly better [sensor] candidate, but none that can combine all of them,' she said.

Perhaps the best advantage of the microdiamond temperature probes, according to the researchers, is that they can detect fast thermal variations, meaning they could be used to measure different materials' thermal properties down to the microscale or potentially nanoscale, if nano-sized probes can be produced.

The article, 'Diamond contact-less micrometric temperature sensors,' is authored by E. Homeyer, S. Pailhes, R. Debord, V. Jary, C. Dujardin, and G. Ledoux. It will be published in the journal Applied Physics Letters on June 16, 2015 (DOI: 10.1063/1.4921177).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
Graphene heat-transfer riddle unraveled
Chicago IL (SPX) Jun 22, 2015
Researchers have solved the long-standing conundrum of how the boundary between grains of graphene affects heat conductivity in thin films of the miracle substance - bringing developers a step closer to being able to engineer films at a scale useful for cooling microelectronic devices and hundreds of other nano-tech applications. The study, by researchers at the University of Illinois at C ... read more


CARBON WORLDS
Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

China, Russia plan joint landing on the Moon

NASA's LRO Moves Closer to the Lunar Surface

CARBON WORLDS
NASA Signs Agreements to Advance Agency's Journey to Mars

New study favors cold, icy early Mars

Scientists find methane in Mars meteorites

Red Planet Rising

CARBON WORLDS
Robotic Tunneler May Explore Icy Moons

How to sail through space on sunbeams - solar satellite leads the way

XCOR Selects Matrix Composites to Develop Lynx Chines

Spacecraft glitch shifts orbiting ISS: Russia

CARBON WORLDS
Electric thruster propels China's interstellar ambitions

China Plans First Ever Landing On The Lunar Far Side

China ranked 4th among world space powers

3D printer making Chinese space suit parts

CARBON WORLDS
Russian, US Scientists to Cooperate in Space Exploration Despite Sanctions

'Hard landing' as three astronauts return to Earth from ISS

ISS Adjusts Orbit to Evade Space Junk

Space station back on track after mystery Soyuz glitch

CARBON WORLDS
Garvey Spacecraft selects Pacific Spaceport Complex

Sentinel-2A satellite ready for Launch from Kourou

Arianespace restructure signals major changes in company governance

NASA issues RFP for New Class of Launch Services

CARBON WORLDS
Helium-Shrouded Planets May Be Common in Our Galaxy

Hubble detects stratosphere-like layer around exoplanet

Work-experience schoolboy discovers a new planet

Hubble in 'Oh Planet, What Art Thou?' 25th Anniversary Video

CARBON WORLDS
Penn research simplifies recycling of rare-earth magnets

Penn researchers develop a new type of gecko-like gripper

Squid inspires camouflaging smart materials

Video game titans get back in stride at E3




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.