Subscribe free to our newsletters via your
. 24/7 Space News .




CARBON WORLDS
Diagnostics of quality of graphene and spatial imaging of reactivity
by Staff Writers
Moscow, Russia (SPX) May 13, 2015


Location of defects is important to estimate the quality of carbon materials and to predict physical and chemical properties of graphene systems. Image courtesy Ananikov Lab. For a larger version of this image please go here.

A convenient procedure to visualize defects on graphene layers by mapping the surface of carbon materials with an appropriate contrast agent was introduced by a team of researchers from Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences (Moscow) involved in international collaborative project.

Developed imaging (tomography) procedure has revealed organized patterns of defects on large areas of carbon surfaces. Several types of defects on the carbon surface can be "caught" and captured on the microscopic image within a few minutes. The article describing the research was published in Chemical Science journal of Royal Society of Chemistry (DOI: 10.1039/c5sc00802f).

Graphene and related 2D materials are anticipated to become the compounds of the century. It is not surprising - graphene is extremely thin and strong, as well as possesses outstanding electrical and thermal characteristics. The impact of material with such unique properties may be really impressive.

Scientists foresight the imminent appearance of novel biomedical applications, new generation of smart materials, highly efficient light conversion and photocatalysis reinforced by graphene. However, the stumbling block is that many unique properties and capabilities are related to only perfect graphene with controlled number of defects.

However, in reality ideal defect-free graphene surface is difficult to prepare and defects may have various sizes and shapes. In addition, dynamic behaviour and fluctuations make the defects difficult to locate. The process of scanning of large areas of graphene sheets in order to find out defect locations and to estimate the quality of the material is a time-consuming task. Let alone a lack of simple direct methods to capture and visualize defects on the carbon surface.

Joint research project carried out by Ananikov and co-workers revealed specific contrast agent - soluble palladium complex - that selectively attaches to defect areas on the surface of carbon materials. Pd attachment leads to formation of nanopartilces, which can be easily detected using a routine electron microscope.

The more reactive the carbon center is, the stronger is the binding of contrast agent in the imaging procedure. Thus, reactivity centers and defect sites on a carbon surface were mapped in three-dimensional space with high resolution and excellent contrast using a handy nanoscale imaging procedure.

The developed procedure distinguished carbon defects not only due to difference in their morphology, but also due to varying chemical reactivity. Therefore, this imaging approach enables the chemical reactivity to be visualized with spatial resolution.

Mapping carbon reactivity centers with "Pd markers" gave unique insight into the reactivity of the graphene layers. As revealed in the study, more than 2000 reactive centers can be located per 1 um2 of the surface area of regular carbon material. The study pointed out the spatial complexity of the carbon material at the nanoscale. Mapping of surface defect density showed substantial gradients and variations across the surface area, which can possess a kind of organized structures of defects.

Medical application of imaging (tomography) for diagnostics, including the usage of contrast agents for more accuracy and easier observation, has proven its utility for many years. The present study highlights a new possibility in tomography applications to run diagnostics of materials at atomic scale.

The article "Spatial imaging of carbon reactivity centers in Pd/C catalytic systems" by E. O. Pentsak, A. S. Kashin, M. V. Polynski, K. O. Kvashnina, P. Glatzel and V. P. Ananikov was published in Chemical Science journal of Royal Society of Chemistry.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Institute of Organic Chemistry, Russian Academy of Sciences
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
Plugging up leaky graphene
Boston MA (SPX) May 13, 2015
For faster, longer-lasting water filters, some scientists are looking to graphene --thin, strong sheets of carbon - to serve as ultrathin membranes, filtering out contaminants to quickly purify high volumes of water. Graphene's unique properties make it a potentially ideal membrane for water filtration or desalination. But there's been one main drawback to its wider use: Making membranes i ... read more


CARBON WORLDS
NASA's LRO Moves Closer to the Lunar Surface

European Space Agency Director Wants to Set Up a Moon Base

Russia Invites China to Join in Creating Lunar Station

Japan to land first unmanned spacecraft on moon in 2018

CARBON WORLDS
Exploring the 'Spirit of St. Louis' Crater

The First Martian Marathon

Technique for finding signs of life on the Red Planet

Quick Detour by NASA Mars Rover Checks Ancient Valley

CARBON WORLDS
The Moon or Mars: Flawed Debate, False Choice - Part Two

NASA Challenges Designers to Construct Habitat for Deep Space Exploration

NASA's CubeSat Initiative aids solar sail tests in space

The Moon or Mars: Flawed Debate, False Choice - Part One

CARBON WORLDS
3D printer making Chinese space suit parts

Xinhua Insight: How China joins space club?

Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

CARBON WORLDS
ISS Partners Adjust Spacecraft Schedule

Samantha's longer stay on ISS

Italian astronaut shows how to use restroom on ISS online

Russia delays return of ISS crew members after supply ship failure

CARBON WORLDS
Mexico Wanted to Cancel Satellite Launch on Russian Carrier Rocket

SpaceX cargo ship returns to Earth in ocean splashdown

DirecTV-15 and SKY Mexico-1 integrated for Ariane 5 heavy-lift mission

Russia to Launch US Comms Satellite Into Space

CARBON WORLDS
Weather forecasts for planets beyond our solar system

Astrophysicists offer proof that famous image shows forming planets

Astronomers detect drastic atmospheric change in super Earth

New exoplanet too big for its star

CARBON WORLDS
Light it up: Materials crystallize with surprising properties

New chemical catalysts are less expensive, more sustainable

The Internet wants a laser mounted on the space station

A metal composite that will (literally) float your boat




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.