Subscribe to our free daily newsletters
. 24/7 Space News .

Subscribe to our free daily newsletters

Developing a nanoscale 'clutch'
by Staff Writers
Bristol, UK (SPX) Oct 07, 2015

A model microscopic system to demonstrate the transmission of torque in the presence of thermal fluctuations -- necessary for the creation of a tiny 'clutch' operating at the nanoscale -- has been assembled at the University of Bristol, UK. This image shows the principle of operation of the 'nanoclutch': red spheres rotate clockwise and an opposing torque is applied to a central axle. Image courtesy Dr Paddy Royall, University of Bristol. For a larger version of this image please go here.

A model microscopic system to demonstrate the transmission of torque in the presence of thermal fluctuations - necessary for the creation of a tiny 'clutch' operating at the nanoscale - has been assembled at the University of Bristol as part of an international collaboration.

When driving a car, the clutch mechanically carries the torque produced by the engine to the chassis of the vehicle - a coupling that has long been tested and optimized in such macroscopic machines, giving us highly efficient engines.

For microscopic machines, however, developing a clutch which would operate at the nanoscale is much more challenging because, at microscopic length scales, different physics need to be considered. Thermal fluctuations play an increasingly dominant role as a device is miniaturised, leading to increased dissipation of energy and the need to develop new design principles.

In the model microscopic system developed by scientists from Bristol, Dusseldorf, Mainz, Princeton and Santa Barbara, a ring of colloidal particles are localised in optical tweezers and automatically translated on a circular path, transferring a rotational motion to an assembly of identical colloids confined to the interior region.

Dr Paddy Royall of the University of Bristol said: "This device looks a lot like a washing machine, but the dimensions are tiny. Through optical manipulation the particle ring can be squeezed at will, altering the coupling between the driven and loaded parts of the assembly and providing a clutch-like operation mode."

Colloidal suspensions fall into the category of materials known as 'soft matter', and the softness of the rotational device is shown to lead to new transmission phenomena not observed in macroscopic machines. "Exploiting the softness of nanomaterials gives us additional and unprecedented control mechanisms which may be employed when designing microscopic machines," Dr Royall explained.

In addition to the experiments performed at the University of Bristol, physicists at the University of Dusseldorf have developed model computer simulations to further investigate torque coupling at the nanoscale. This enables the measurement of nanomachine efficiency, which is small but can be optimised through careful control of the system parameters.

The researchers have identified three different transmission regimes: a solid-like scenario which transmits torque much like a macroscopic gear; a liquid-like scenario in which much of the energy input is lost to friction and an intermediate slipping scenario unique to soft materials which combines aspects of the solid-like and liquid-like behaviours.

"A basic understanding of the coupling process will give us insight into the construction of nanomachines, in which torque transfer is absolutely essential," said Professor Hartmut Loewen of the University of Dusseldorf.

The research is published in Nature Physics. Paper: 'Transmission of torque at the nanoscale' by Ian Williams, Erdal C Oguz, Thomas Speck, Paul Bartlett, Hartmut Loewen and C. Patrick Royall in Nature Physics.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
University of Bristol
Nano Technology News From
Computer Chip Architecture, Technology and Manufacture

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Nanocellulose materials by design
Chicago IL (SPX) Oct 06, 2015
Theoretically, nanocellulose could be the next hot supermaterial. A class of biological materials found within numerous natural systems, most notably trees, cellulose nanocrystals have captured researchers' attention for their extreme strength, toughness, light weight, and elasticity. The materials are so strong and tough, in fact, that many people think they could replace Kevlar in ballistic ve ... read more

Lunar Pox

Space startup confirms plans for robotic moon landings

Asteroids found to be the moon's main 'water supply'

Russian scientist hope to get rocket fuel, water, oxygen from Lunar ice

Lakes on Mars - SETI Editorial

NASA outlines obstacles to putting a human on Mars

ASU Mars images star in 'The Martian'

Mars colonisation still far off: Amitabh Ghosh

UTMB developing guidelines for commercial space travel

Dog smartphone and dancing humanoids on show at HK Fair

Aerojet completes major review of Orion subsystems

They're Loving It: Cheeseburgers Will Be Added to ISS Menu

Latest Mars film bespeaks potential of China-U.S. space cooperation

Exhibition on "father of Chinese rocketry" opens in U.S.

The First Meeting of the U.S.-China Space Dialogue

China's new carrier rocket succeeds in 1st trip

International Space Agencies Meet to Advance Space Exploration

Meet the International Docking Adapter

NASA extends Boeing contract for International Space Station

Russian launches cargo spaceship to the ISS

Both passengers for next Ariane 5 mission arrive in French Guiana

Arianespace signs ARSAT to launch a new satellite for Argentina

Ariane 5 orbits Sky Muster and ARSAT-2

A satellite launcher for the Middle East

Hubble Telescope Spots Mysterious Space Objects

Exoplanet Anniversary: From Zero to Thousands in 20 Years

Mysterious ripples found racing through planet-forming disc

The Most Stable Source of Light in the World

Using optical fiber to generate a two-micron laser

Dielectric film has refractive index close to air

Northrop Grumman upgrading G/ATOR radar system

Raytheon's AESA 360-degree radar moves toward production

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement