. 24/7 Space News .
TECH SPACE
Detecting radioactive material from a remote distance
by Staff Writers
Washington DC (SPX) Mar 24, 2016


Researchers have proposed a new way to detect radioactive material using two co-located laser beams that interact with elevated levels of oxygen ions near a gamma-ray emitting source. Image courtesy Joshua Isaacs, et al/ University of Maryland. For a larger version of this image please go here.

In 2004 British national Dhiren Barot was arrested for conspiring to commit a public nuisance by the use of radioactive materials, among other charges. Authorities claimed that Barot had researched the production of "dirty bombs," and planned to detonate them in New York City, Washington DC, and other cities. A dirty bomb combines conventional explosives with radioactive material.

Although Barot did not build the bombs, national security experts believe terrorists continue to be interested in such devices for terror plots. Now researchers from the University of Maryland have proposed a new technique to remotely detect the radioactive materials in dirty bombs or other sources. They describe the method in a paper in the journal Physics of Plasmas, from AIP Publishing.

While the explosion of a dirty bomb would likely cause more damage than the radioactive substances it spreads, the bombs could create fear and panic, contaminate property, and require potentially costly cleanup, according to the U.S. Nuclear Regulatory Commission.

Radioactive materials are routinely used at hospitals for diagnosing and treating diseases, at construction sites for inspecting welding seams, and in research facilities. Cobalt-60, for example, is used to sterilize medical equipment, produce radiation for cancer treatment, and preserve food, among many other applications. In 2013 thieves in Mexico stole a shipment of cobalt-60 pellets used in hospital radiotherapy machines, although the shipment was later recovered intact.

Cobalt-60 and many other radioactive elements emit highly energetic gamma rays when they decay. The gamma rays strip electrons from the molecules in the surrounding air, and the resulting free electrons lose energy and readily attach to oxygen molecules to create elevated levels of negatively charged oxygen ions around the radioactive materials.

It's the increased ion density that the University of Maryland researchers aim to detect with their new method. They calculate that a low-power laser aimed near the radioactive material could free electrons from the oxygen ions. A second, high-power laser could energize the electrons and start a cascading breakdown of the air. When the breakdown process reaches a certain critical point, the high-power laser light is reflected back. The more radioactive material in the vicinity, the more quickly the critical point is reached.

"We calculate we could easily detect 10 milligrams [of cobalt-60] with a laser aimed within half a meter from an unshielded source, which is a fraction of what might go into a dirty bomb" said Joshua Isaacs, first author on the paper and a graduate student working with University of Maryland physics and engineering professors Phillip Sprangle and Howard Milchberg. Lead could shield radioactive substances, but most ordinary materials like walls or glass do not stop gamma rays.

The lasers themselves could be located up to a few hundred meters away from the radioactive source, Isaacs said, as long as line-of-sight was maintained and the air was not too turbulent or polluted with aerosols. He estimated that the entire device, when built, could be transported by truck through city streets or past shipping containers in ports. It could also help police or security officials detect radiation without being too close to a potentially dangerous gamma ray emitter.

The proposed remote radiation detection method is not the first, but it has advantages over other approaches. For example, terahertz radiation has also been proposed as a way to breakdown air in the vicinity of radioactive materials, but producing terahertz radiation requires complicated and costly equipment.

Another proposed method would use a high-power infrared laser to both strip electrons and break down the air, but the method requires the detector be located in the opposite direction of the laser, which would make it impractical to create a single, mobile device.

So far the researchers at the University of Maryland have analyzed the feasibility of the new approach and experiments are underway to test it in the lab.

Isaacs said it would be difficult to estimate when a detection device based on the new method might be commercialized, but he didn't foresee a specific manufacturing challenge that would stand in its way.

"We specifically chose well developed technology for each component of the proposed system," he said.

The article, "Remote Monostatic Detection of Radioactive Materials by Laser-induced Breakdown," is authored by Joshua Isaacs, Chenlong Miao and Phillip Sprangle. It will be published in Physics of Plasmas on March 15, 2016 (DOI: 10.1063/1.4943404).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Unpacking space radiation to control astronaut and earthbound cancer risk
Denver CO (SPX) Mar 15, 2016
NASA limits an astronaut's radiation exposures to doses that keep their added risk of fatal cancer below 3 percent. Unfortunately, that ceiling restricts the time an astronaut may spend in space, which in turn restricts the ability to perform longer missions, say a mission to Mars. Now a network of research laboratories seeks to understand the mechanisms and effects of space radiation with the g ... read more


TECH SPACE
Permanent Lunar Colony Possible in 10 Years

China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

TECH SPACE
How the ExoMars mission could sniff out life on Mars

ExoMars on its way to solve the Red Planet's mysteries

Europe's New Mars Mission Bringing NASA Radios Along

Close comet flyby threw Mars' magnetic field into chaos

TECH SPACE
Broomstick flying or red-light ping-pong? Gadgets at German fair

Jacobs Joins Coalition for Deep Space Exploration

Accelerating discovery with new tools for next generation social science

Space Race Competition helps turn NASA Tech into new products

TECH SPACE
China to establish first commercial rocket launch company

China's ambition after space station

Sky is the limit for China's national strategy

Aim Higher: China Plans to Send Rover to Mars in 2020

TECH SPACE
Cygnus Set to Deliver Its Largest Load of Station Science, Cargo

Grandpa astronaut to break Scott Kelly's space record

Three new crew, including US grandpa, join space station

Space station astronauts ham it up to inspire student scientists

TECH SPACE
Launch of Dragon Spacecraft to ISS Postponed Until April

ILS and INMARSAT Agree To Future Proton Launch

Soyuz 2-1B Carrier Rocket Launched From Baikonur

ISRO launches PSLV C32, India's sixth navigation satellite

TECH SPACE
VLA observes earliest stages of planet formation

NASA's K2 mission: Kepler second chance to shine

Star eruptions create and scatter elements with Earth-like composition

Astronomers discover two new 'hot Jupiter' exoplanets

TECH SPACE
The quest for spin liquids

A foldable material that can change size, volume and shape

New insights into atomic disordering of complex metal oxides

How electrons travel through exotic new material









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.