Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Designing Ion 'Highway Systems' for Batteries
by Staff Writers
Evanston IL (SPX) Jun 10, 2014


Monica Olvera de la Cruz.

Since the early 1970s, lithium has been the most popular element for batteries: it's the lightest of all metals and has the greatest electrochemical potential. But a lithium-based battery has a major disadvantage: it's highly flammable, and when it overheats, it can burst into flames.

For years, scientists have searched for safer battery materials that still have the same advantages as lithium. While plastics (or polymers) seemed like an obvious choice, researchers never fully understood how the material would change when an ion charge was introduced.

Now a McCormick team has married two traditional theories in materials science that can explain how the charge dictates the structure of the material. This opens the door for many applications, including a new class of batteries.

"There is a huge effort to go beyond lithium in a flammable solvent," says Monica Olvera de la Cruz, Lawyer Taylor Professor of Materials Science and Engineering and senior author of the paper.

"People have been looking at alternatives that are not explosive, like plastics. But they didn't know how to compute what happens when you put in a charge."

The team looked at plastics known as block copolymers (BCPs) that are two types of polymers stuck together. They are a leading material for use as ion conductors because they self-assemble into nanostructures that both enable ion charge transport and maintain structural integrity.

BCPs innately have nano-channels through which the ion can travel, but the charges themselves manipulate the shape of the channels. To use the material in batteries, researchers must find a way to control the shape of the nano-channels, so that the charge moves well.

"If you can optimize the ability of the charge to move through the system, then you can optimize the power that actually comes out of the battery," says Charles Sing, a postdoctoral fellow in Olvera de la Cruz's lab and first author of the paper.

The problem lies in the structure of the material. BCPs are very long chains of molecules. When they are stretched out, they extend over distances much greater than the typical size of the ion charges. However, the charges still have a strong effect on the nano-channels despite being much smaller. To properly understand the dynamics of BCPs, different theories are needed for the different length scales.

To understand how the ion charge changes the structure of the BCPs' nano-channels, Sing and Jos Zwanikken, a research assistant professor in the same lab, combined two traditional theories: the Self-Consistent Field Theory and Liquid State Theory. Self-Consistent Field Theory describes how long molecules behave.

"Liquid State Theory, on the other hand, describes how charges operate on very local, atomic levels," Zwanikken says.

While these two theories have been studied, in-depth, for decades, no one has previously put them together. When combined, they provide a new way of looking at the nano-channel systems. The electrical charge, known as an ion, is associated with an oppositely charged molecule, known as a counter-ion, which is also present in the nano-channel.

Together, these ions and counter-ions are highly attracted to each other and form a salt. These salts cluster into miniature crystals, which exert a force on the nano-channels, changing their structure.

Olvera de la Cruz and her group found that these two effects balance one another-the salts want to form mini-crystals, which forces the nano-channel to deform. This understanding makes it possible to predict and even design a "highway system" through which the ions are transported, maximizing the power of the battery.

The team hopes their finding will guide experimentalists as they test materials. It will give researchers more information about the physical concepts underlying BCP systems.

Olvera de la Cruz says, "We have provided the tools to understand these systems by including ionic-length scale effects into the polymer mesoscale morphology."

.


Related Links
McCormick School of Engineering
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
Seeing how a lithium-ion battery works
Boston MA (SPX) Jun 10, 2014
New observations by researchers at MIT have revealed the inner workings of a type of electrode widely used in lithium-ion batteries. The new findings explain the unexpectedly high power and long cycle life of such batteries, the researchers say. The findings appear in a paper in the journal Nano Letters co-authored by MIT postdoc Jun Jie Niu, research scientist Akihiro Kushima, professors ... read more


ENERGY TECH
55-year old dark side of the moon mystery solved

New evidence supporting moon formation via collision of 2 planets

NASA Missions Let Scientists See Moon's Dancing Tide From Orbit

Earth's gravitational pull stretches moon surface

ENERGY TECH
Opportunity Recovering From Flash Memory Problems

Rover Corrects its Spacecraft Clock

NASA could not deliver humans to Mars

Big Brother creators to document Mars One mission

ENERGY TECH
Astronaut Mike Hopkins says space smells

NASA Announces Two Upcoming Undersea Missions

Orion Crew And Service Modules Stacked

Towards manned orbital mission: Iran to build its own spacecraft

ENERGY TECH
Chinese lunar rover alive but weak

China's Jade Rabbit moon rover 'alive but struggling'

Chinese space team survives on worm diet for 105 days

Moon rover Yutu comes closer to public

ENERGY TECH
Russia, US resume talks on new joint projects for ISS

Russian Soyuz with New Crew Docks at ISS in Automatic Mode

Russian, German and US astronauts dock with ISS

Six-Person Station Crew Enjoys Day Off Following Docking

ENERGY TECH
Lie detector exposes sabotage of Proton-M booster

Next ATV transferred to Final Assembly Building at Kourou

Roscosmos Scolded for 'Pestering Society' with Proton Crash Theories

SpaceX unveils capsule to ferry astronauts to space

ENERGY TECH
Kepler space telescope ready to start new hunt for exoplanets

Astronomers Confounded By Massive Rocky World

Two planets orbit nearby ancient star

First light for SPHERE exoplanet imager

ENERGY TECH
Raytheon selected to demonstrate next generation, modular radar system

Analyzing Resistance to Impacts and Improving Armor Plating

Boeing Completes 2nd 702HP Satellite for the Government of Mexico

Northrop Grumman to Supply Navigation System SKorea's KOMPSAT-2 Birds




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.