Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Defects can 'Hulk-up' materials
by Staff Writers
Berkeley CA (SPX) May 25, 2015


Cross sectional HRTEM image of bismuth telluride thin-film grown on gallium arsenide substrate. Image courtesy of Junqiao Wu, Berkeley Lab. For a larger version of this image please go here.

In the story of the Marvel Universe superhero known as the Hulk, exposure to gamma radiation transforms scientist Bruce Banner into a far more powerful version of himself. In a study at Berkeley Lab, exposure to alpha-particle radiation has been shown to transform certain thermoelectric materials into far more powerful versions of themselves.

"We've demonstrated that by irradiating a thermoelectric semiconductor with high-energy alpha particles, we can control native defects in the crystal so that these defects actually enhance the performance of the thermoelectric material by a factor of up to ten," says Junqiao Wu, a physicist who holds joint appointments with Berkeley Lab's Materials Sciences Division and the University of California Berkeley's Department of Materials Science and Engineering.

"Although this discovery goes against common wisdom, it turns out that when properly managed, a damaged thermoelectric material is a better thermoelectric material."

The ability of thermoelectric materials to convert heat into electricity, or electricity into cooling, represents a potentially huge source of clean, green energy. Consequently, thermoelectric materials have been heavily investigated over the past several decades. Past studies have shown that the efficiency of heat-to-electricity conversion - a metric known as the "figure-of-merit" or ZT - is inherently limited by the coupling of three key parameters: electrical conductivity, thermopower and thermal conductivity.

"Usually thermopower is enhanced at the cost of a reduction in electrical conductivity," Wu says, "but we have been able to break this undesired coupling and demonstrate simultaneous increases in electrical conductivity of up to 200-percent, and thermopower of up to 70-percent."

By irradiating with alpha-particles thin-films of bismuth telluride, a well-characterized thermoelectric, Wu and his collaborators achieved a ZT value as high as 1.24, the highest rating ever recorded for bismuth telluride at room temperature.

"The alpha particles knocked out atoms from their lattice sites and introduced native defects such as vacancies and interstitials," says Joonki Suh, a member of Wu's research group and lead author of a paper describing this study (see below).

"Normally, you would expect defects to degrade a material's performance, but the alpha particles inflicted relatively heavy damage beneath the surfaces of the bismuth telluride thin-films while allowing the surfaces to retain good electrical conductivity. The results were controlled native defects that acted beneficially and multi-functionally as electron donors and electron energy filters."

As they expect native defects to be generated and behave in a similar manner to what was accomplished with bismuth telluride across a wide range of narrow-bandgap semiconductors, Wu and his collaborators believe their technique can be used to improve the ZT values of other thermoelectric materials without the need for complicated and expensive materials processing.

"For example," Wu says, "one could use irradiation to improve the performance of thin-film thermoelectric devices that are potentially important for on-chip cooling of high-power electronics. One could also control the growth process of bulk thermoelectric materials to stabilize useful native defects."

In addition, thermoelectric materials are being groomed for use in radiative environments, such as outer space. The data provided by this study should provide helpful guidelines for the selection of future materials.

"From a fundamental science point of view, defects, especially native defects, have always been a focus of research in the materials sciences, but their role in coupled thermal-electrical transport, as well as in entropy-transporting in thermoelectric materials, has been poorly understood," Wu says. "Our work lays a solid foundation for a complete understanding of the physics behind these processes. It also serves as a reminder that defects in materials are not necessarily bad."

A paper describing this research has been published in the journal Advanced Materials. The paper is titled "Simultaneous Enhancement of Electrical Conductivity and Thermopower of Bi2Te3 by Multi-Functionality of Native Defects." Wu is the corresponding author, Suh is the lead author. Other authors are Kin Man Yu, Deyi Fu, Xinyu Liu, Fan Yang, Jin Fan, David Smith, Yong-Hang Zhang, Jacek Furdyna, Chris Dames and Wladyslaw Walukiewicz.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Lawrence Berkeley National Laboratory
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Superhydrophobic glass coating offers clear benefits
Oak Ridge TN (SPX) May 15, 2015
A moth's eye and lotus leaf were the inspirations for an antireflective water-repelling, or superhydrophobic, glass coating that holds significant potential for solar panels, lenses, detectors, windows, weapons systems and many other products. The discovery by researchers at the Department of Energy's Oak Ridge National Laboratory, detailed in a paper published in the Journal of Materials ... read more


TECH SPACE
NASA's LRO Moves Closer to the Lunar Surface

European Space Agency Director Wants to Set Up a Moon Base

Russia Invites China to Join in Creating Lunar Station

Japan to land first unmanned spacecraft on moon in 2018

TECH SPACE
Martian impact crater or supervolcano caldera

Martian Reminder of a Pioneering Flight

Exploring the 'Spirit of St. Louis' Crater

The First Martian Marathon

TECH SPACE
The Moon or Mars: Flawed Debate, False Choice - Part Two

Japan to redesign cargo spacecraft for cost-saving, multifunction

NASA's CubeSat Initiative aids solar sail tests in space

NASA Challenges Designers to Construct Habitat for Deep Space Exploration

TECH SPACE
China Plans First Ever Landing On The Lunar Far Side

3D printer making Chinese space suit parts

Xinhua Insight: How China joins space club?

Chinese scientists mull power station in space

TECH SPACE
ISS Partners Adjust Spacecraft Schedule

Samantha's longer stay on ISS

Italian astronaut shows how to use restroom on ISS online

Russia delays return of ISS crew members after supply ship failure

TECH SPACE
Initial Ariane 5 assembly completed for July launch of dual payloads

Mexico Wanted to Cancel Satellite Launch on Russian Carrier Rocket

SpaceX cargo ship returns to Earth in ocean splashdown

Commission on Proton Rocket Failure to Finish Investigation by End of May

TECH SPACE
Weather forecasts for planets beyond our solar system

Astrophysicists offer proof that famous image shows forming planets

Astronomers detect drastic atmospheric change in super Earth

New exoplanet too big for its star

TECH SPACE
Defects can 'Hulk-up' materials

Seashell strength inspires stress tests

Patent for Navy small space debris tracker

Nanomaterials inspired by bird feathers turn light into color




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.