Subscribe free to our newsletters via your
. 24/7 Space News .

Subscribe free to our newsletters via your

Deciphering compact galaxies in the young universe
by Staff Writers
Tokyo, Japan (SPX) Mar 14, 2016

The relation between ellipticity and size. Red data points are the observed data; most of them have elongated shapes and larger galaxies tend to have larger ellipticities. Gray-colored regions represent the probability distributions calculated with the computer simulations, in which two galaxies are located at so close distance that they are blended as an elongated galaxy, as shown in the right pictures schematically. Image courtesy Ehime University. For a larger version of this image please go here.

A group of researchers using the Suprime-Cam instrument on the Subaru Telescope has discovered about 80 young galaxies that existed in the early universe about 1.2 billion years after the Big Bang.

The team, with members from Ehime University, Nagoya University, Tohoku University, Space Telescope Science Institute (STScI) in the U.S., and California Institute of Technology, then made detailed analyses of imaging data of these galaxies taken by the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope.

At least 54 of the galaxies are spatially resolved in the ACS images. Among them, 8 galaxies show double-component structures and the remaining 46 seem to have elongated structures. Through a further investigations using a computer simulation, the group found that the observed elongated structures can be reproduced if two or more galaxies reside in close proximity to each other.

These results strongly suggest that 1.2 billion years after the Big Bang, galactic clumps in the young universe grow to become large galaxies through mergers, which then causes active star formation to take place. This research was conducted as part of the treasury program of Hubble Space Telescope (HST), "Cosmic Evolution Survey (COSMOS)".

The powerful survey capability of the Subaru Telescope provided the essential database of the candidate objects in the early universe for this research project.

The Importance of Studying Early Galaxies
In the present universe, at a point 13.8 billion years after the Big Bang, there are many giant galaxies like our Milky Way, which contains about 200 billion stars in a disk a hundred thousand light years across. However, there were definitely no galaxies like it in the epoch just after the Big Bang.

Pre-galactic clumps appear to have formed in the universe about 200 million years after the Big Bang. These were cold gas clouds much smaller than the present giant galaxies by a factor of 100, with masses smaller by a factor of a million. The first galaxies were formed when the first stars were born in these gas clumps. These small galactic clumps then experienced continuous mergers with surrounding clumps and eventually grew into large galaxies.

Much effort has been made through deep surveys to detect actively star-forming galaxies in the young universe. As a result, the distances of the earliest galaxies are now known to be at more than 13 billion light-years. We see them at a time when the age of the universe was only 800 million years (or about 6% of the present age). However, since most of the galaxies in the young universe were quite small, their detailed structures have not yet been observed.

Exploring the Young Universe Using Subaru Telescope and Hubble Space Telescope
While the wide field of view of the Subaru Telescope has played an important role in finding such young galaxies, the high spatial resolution of the Hubble Space Telescope (HST) is required to investigate the details of their shapes and internal structures.

The research team looked back to a point 12.6 billion years ago using a two-pronged approach. The first step was to use the Subaru Telescope in a deep survey to search out the early galaxies, and then follow that up to investigate their shapes using the Advanced Camera for Surveys (ACS) on board the HST. The ACS revealed 8 out of 54 galaxies to have double-component structures, where two galaxies seem to be merging with each other.

Then, a question arose as to whether the remaining 46 galaxies are really single galaxies. Here, the research team questioned why many of these galaxies show elongated shapes in the HST/ACS images. This is because such elongated shapes, together with the positive correlation between ellipticity and size, strongly suggest a possibility that two small galaxies reside so close to each other that they cannot be resolved into two distinct galaxies, even using ACS.

To examine whether the idea of closely crowded galaxies is viable, the researchers conducted so-called Monte Carlo computer simulations. First, the group put two identical artificial sources at random locations with various angular separations onto the real observed ACS image. Then, the group tried to extract the images with the same method used for the actual observed ACS image and measured their ellipticities and sizes

As shown the simulated distribution reproduces the observed results very well. That is, most of the galaxies that were observed as single sources in the HST/ACS images are actually two merging galaxies. However, the distances between two merging galaxies are so small they cannot be spatially resolved, even by HST's high resolution!

If this idea is valid for the galaxies that appear to be single, then it's possible to assume that the galaxies with the highest rate of activities have the smallest sizes. This is expected because the smallest sizes imply the smallest separation between two merging galaxies. If this is the case, such galaxies would experience intense star formation activity triggered by their mergers.

On the other hand, some galaxies with the smallest sizes are moderately separated pairs, but are observed along the line of sight, or are just single, isolated star-forming galaxies. These are basically the same as large-size galaxies.

The research team has confirmed that the observed relation between star formation activity and size is consistently explained by the team's idea.

To date, the shapes and structures of small young galaxies have been investigated by using ACS on HST. If a source was detected as a single ACS source, it was treated as a single galaxy and its morphological parameters were evaluated. This research suggests that such a small galaxy can consist of two (or perhaps, more) interacting/merging galaxies located so close together that they cannot be resolved by even the high angular resolution of the ACS.

Looking into the Future of Studying the Past
Current galaxy formation theories predict that small galaxies in the young universe evolve into large galaxies via successive mergers. The question remains: what is the next step in observational studies for galaxy formation in the young universe? This is one of the frontier fields that requires future "super telescopes," e.g. Thirty Meter Telescope (TMT) and the James Webb Space Telescope (JWST). They will enable the next breakthroughs in the study of early galaxy formation and evolution.

This research will be published in the Astrophysical Journal titled "Morphological Properties of Lyman Alpha Emitters at Redshift 4.86 in the COSMOS Field: Clumpy Star Formation or Merger?" by Masakazu A. R. Kobayashi, Katsuhiro L. Murata, Anton M. Koekemoer, Takashi Murayama, Yoshiaki Taniguchi, Masaru Kajisawa, Yasuhiro Shioya, Nick Z. Scoville, Tohru Nagao, and Peter L. Capak. Online version was posted February 24, 2016 and print version was on March 1, 2016 (Volume 819, article id. 25).

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
Subaru Telescope
Space Telescope News and Technology at

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Discovered for the first time the "birthplace" of a fast radio burst
Rome, Italy (SPX) Feb 26, 2016
An international team of astronomers, including Marta Burgay, Delphine Perrodin and Andrea Possenti from the Italian National Institute for Astrophysics (INAF), identified for the first time the place of origin of a Fast Radio Burst (FRB), enigmatic radio signals lasting just a few milliseconds, which appear without warning in the sky. The discovery was made thanks to observations done with opti ... read more

Permanent Lunar Colony Possible in 10 Years

China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

Europe's New Mars Mission Bringing NASA Radios Along

Europe, Russia embark on search for life on Mars

Close comet flyby threw Mars' magnetic field into chaos

ExoMars 2016 - The heat is on

Astronaut Scott Kelly to retire in April

Greece tourism insists on sunny outlook amid refugee crisis

Planetary Science Institute funded for expanded education public outreach effort

NASA tests inflatable heat shield technology for deep space missions

China's ambition after space station

Sky is the limit for China's national strategy

Aim Higher: China Plans to Send Rover to Mars in 2020

China's lunar probe sets record for longest stay

Marshall supports 15 years of ISS science discoveries

Space station astronauts ham it up to inspire student scientists

Roscosmos-NASA Contract on US Astronauts Delivery to ISS on Restructuring

NASA station leads way for improved measurements of Earth orientation, shape

ISRO launches PSLV C32, India's sixth navigation satellite

Assembly of Russia's Soyuz Rocket With Earth-Sensing Satellite Completed

Ariane 5 launch contributes to Ariane 6 development

SpaceX launches SES-9 satellite to GEO; but booster landing fails

NASA's K2 mission: Kepler second chance to shine

Star eruptions create and scatter elements with Earth-like composition

Astronomers discover two new 'hot Jupiter' exoplanets

Sharpest view ever of dusty disc around aging star

Total invisibility cloak an impossibility, scientists say

Unpacking space radiation to control astronaut and earthbound cancer risk

Super-clear synapses at super resolutions

Eco-friendly tech could transform European aluminum industry by 2050

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement