. 24/7 Space News .
STELLAR CHEMISTRY
Dark matter and dark energy: do they really exist?
by Staff Writers
Geneva, Switzerland (SPX) Nov 23, 2017


illustration only

A University of Geneva researcher has recently shown that the accelerating expansion of the universe and the movement of the stars in the galaxies can be explained without drawing on the concepts of dark matter and dark energy... which might not actually exist. For close on a century, researchers have hypothesised that the universe contains more matter than can be directly observed, known as "dark matter".

They have also posited the existence of a "dark energy" that is more powerful than gravitational attraction. These two hypotheses, it has been argued, account for the movement of stars in galaxies and for the accelerating expansion of the universe respectively.

But - according to a researcher at the University of Geneva (UNIGE), Switzerland - these concepts may be no longer valid: the phenomena they are supposed to describe can be demonstrated without them. This research, which is published in The Astrophysical Journal, exploits a new theoretical model based on the scale invariance of the empty space, potentially solving two of astronomy's greatest mysteries.

In 1933, the Swiss astronomer Fritz Zwicky made a discovery that left the world speechless: there was, claimed Zwicky, substantially more matter in the universe than we can actually see. Astronomers called this unknown matter "dark matter", a concept that was to take on yet more importance in the 1970s, when the US astronomer Vera Rubin called on this enigmatic matter to explain the movements and speed of the stars.

Scientists have subsequently devoted considerable resources to identifying dark matter - in space, on the ground and even at CERN - but without success. In 1998 there was a second thunderclap: a team of Australian and US astrophysicists discovered the acceleration of the expansion of the universe, earning them the Nobel Prize for physics in 2011.

However, in spite of the enormous resources that have been implemented, no theory or observation has been able to define this dark energy that is allegedly stronger than Newton's gravitational attraction. In short, dark matter and dark energy are two mysteries that have had astronomers stumped for over 80 years and 20 years respectively.

A new model based on the scale invariance of the empty space
The way we represent the universe and its history are described by Einstein's equations of general relativity, Newton's universal gravitation and quantum mechanics. The model-consensus at present is that of a big bang followed by an expansion. "In this model, there is a starting hypothesis that hasn't been taken into account, in my opinion", says Andre Maeder, honorary professor in the Department of Astronomy in UNIGE's Faculty of Science.

"By that I mean the scale invariance of the empty space; in other words, the empty space and its properties do not change following a dilatation or contraction."

The empty space plays a primordial role in Einstein's equations as it operates in a quantity known as a "cosmological constant", and the resulting universe model depends on it. Based on this hypothesis, Maeder is now re-examining the model of the universe, pointing out that the scale invariance of the empty space is also present in the fundamental theory of electromagnetism.

Do we finally have an explanation for the expansion of the universe and the speed of the galaxies?
When Maeder carried out cosmological tests on his new model, he found that it matched the observations. He also found that the model predicts the accelerated expansion of the universe without having to factor in any particle or dark energy. In short, it appears that dark energy may not actually exist since the acceleration of the expansion is contained in the equations of the physics.

In a second stage, Maeder focused on Newton's law, a specific instance of the equations of general relativity. The law is also slightly modified when the model incorporates Maeder's new hypothesis. Indeed, it contains a very small outward acceleration term, which is particularly significant at low densities. This amended law, when applied to clusters of galaxies, leads to masses of clusters in line with that of visible matter (contrary to what Zwicky argued in 1933): this means that no dark matter is needed to explain the high speeds of the galaxies in the clusters.

A second test demonstrated that this law also predicts the high speeds reached by the stars in the outer regions of the galaxies (as Rubin had observed), without having to turn to dark matter to describe them. Finally, a third test looked at the dispersion of the speeds of the stars oscillating around the plane of the Milky Way. This dispersion, which increases with the age of the relevant stars, can be explained very well using the invariant empty space hypothesis, while there was before no agreement on the origin of this effect.

Maeder's discovery paves the way for a new conception of astronomy, one that will raise questions and generate controversy. "The announcement of this model, which at last solves two of astronomy's greatest mysteries, remains true to the spirit of science: nothing can ever be taken for granted, not in terms of experience, observation or the reasoning of human beings", conclued Andre Maeder.

STELLAR CHEMISTRY
Hunt for dark matter is narrowed by new University of Sussex research
Sussex UK (SPX) Nov 20, 2017
Scientists at the University of Sussex have disproved the existence of a specific type of axion - an important candidate 'dark matter' particle - across a wide range of its possible masses. The data were collected by an international consortium, the Neutron Electric Dipole Moment (nEDM) Collaboration, whose experiment is based at the Paul Scherrer Institut in Switzerland. Data were taken t ... read more

Related Links
University of Geneva
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Does the Outer Space Treaty at 50 need a rethink

NASA to send critical science, instruments to Space Station

New motion sensors major step towards cheaper wearable technology

Can a magnetic sail slow down an interstellar probe

STELLAR CHEMISTRY
Flat-Earther's self-launch plan hits a snag

Aerojet Rocketdyne supports ULA Delta II launch of JPSS-1

Old Rivals India, China Nurture New Rivalry in Satellite Launch Business

NASA launches next-generation weather satellite

STELLAR CHEMISTRY
Gadgets for Mars

Ice shapes the landslide landscape on Mars

Previous evidence of water on Mars now identified as grainflows

Winds Blow Dust off the Solar Panels Improving Energy Levels

STELLAR CHEMISTRY
Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

STELLAR CHEMISTRY
Need to double number of operational satellites: ISRO chief

Space Launch plans UK industry tour

Astronaut meets volcano

European Space Week starts in Estonia

STELLAR CHEMISTRY
Booming life for 'PUBG' death-match computer game

3rd SES bids farewell to ANGELS satellite

New way to write magnetic info could pave the way for hardware neural networks

Borophene shines alone as 2-D plasmonic material

STELLAR CHEMISTRY
First known interstellar visitor is an 'oddball'

Lava or Not, Exoplanet 55 Cancri e Likely to have Atmosphere

Images of strange solar system visitor peel away some of the mystery

Familiar-Looking Messenger from Another Solar System

STELLAR CHEMISTRY
Pluto's hydrocarbon haze keeps dwarf planet colder than expected

Jupiter's Stunning Southern Hemisphere

Watching Jupiter's multiple pulsating X-ray Aurora

Help Nickname New Horizons' Next Flyby Target









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.